亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide the first polynomial-time convergence guarantees for the probability flow ODE implementation (together with a corrector step) of score-based generative modeling. Our analysis is carried out in the wake of recent results obtaining such guarantees for the SDE-based implementation (i.e., denoising diffusion probabilistic modeling or DDPM), but requires the development of novel techniques for studying deterministic dynamics without contractivity. Through the use of a specially chosen corrector step based on the underdamped Langevin diffusion, we obtain better dimension dependence than prior works on DDPM ($O(\sqrt{d})$ vs. $O(d)$, assuming smoothness of the data distribution), highlighting potential advantages of the ODE framework.

相關內容

This paper begins with a description of methods for estimating probability density functions for images that reflects the observation that such data is usually constrained to lie in restricted regions of the high-dimensional image space - not every pattern of pixels is an image. It is common to say that images lie on a lower-dimensional manifold in the high-dimensional space. However, although images may lie on such lower-dimensional manifolds, it is not the case that all points on the manifold have an equal probability of being images. Images are unevenly distributed on the manifold, and our task is to devise ways to model this distribution as a probability distribution. In pursuing this goal, we consider generative models that are popular in AI and computer vision community. For our purposes, generative/probabilistic models should have the properties of 1) sample generation: it should be possible to sample from this distribution according to the modelled density function, and 2) probability computation: given a previously unseen sample from the dataset of interest, one should be able to compute the probability of the sample, at least up to a normalising constant. To this end, we investigate the use of methods such as normalising flow and diffusion models. We then show that such probabilistic descriptions can be used to construct defences against adversarial attacks. In addition to describing the manifold in terms of density, we also consider how semantic interpretations can be used to describe points on the manifold. To this end, we consider an emergent language framework which makes use of variational encoders to produce a disentangled representation of points that reside on a given manifold. Trajectories between points on a manifold can then be described in terms of evolving semantic descriptions.

Gaussian variational inference and the Laplace approximation are popular alternatives to Markov chain Monte Carlo that formulate Bayesian posterior inference as an optimization problem, enabling the use of simple and scalable stochastic optimization algorithms. However, a key limitation of both methods is that the solution to the optimization problem is typically not tractable to compute; even in simple settings the problem is nonconvex. Thus, recently developed statistical guarantees -- which all involve the (data) asymptotic properties of the global optimum -- are not reliably obtained in practice. In this work, we provide two major contributions: a theoretical analysis of the asymptotic convexity properties of variational inference with a Gaussian family and the maximum a posteriori (MAP) problem required by the Laplace approximation; and two algorithms -- consistent Laplace approximation (CLA) and consistent stochastic variational inference (CSVI) -- that exploit these properties to find the optimal approximation in the asymptotic regime. Both CLA and CSVI involve a tractable initialization procedure that finds the local basin of the optimum, and CSVI further includes a scaled gradient descent algorithm that provably stays locally confined to that basin. Experiments on nonconvex synthetic and real-data examples show that compared with standard variational and Laplace approximations, both CSVI and CLA improve the likelihood of obtaining the global optimum of their respective optimization problems.

The efficacy of modern generative models is commonly contingent upon the precision of score estimation along the diffusion path, with a focus on diffusion models and their ability to generate high-quality data samples. This study delves into the potentialities of posterior sampling through reverse diffusion. An examination of the sampling literature reveals that score estimation can be transformed into a mean estimation problem via the decomposition of the transition kernel. By estimating the mean of the auxiliary distribution, the reverse diffusion process can give rise to a novel posterior sampling algorithm, which diverges from traditional gradient-based Markov Chain Monte Carlo (MCMC) methods. We provide the convergence analysis in total variation distance and demonstrate that the isoperimetric dependency of the proposed algorithm is comparatively lower than that observed in conventional MCMC techniques, which justifies the superior performance for high dimensional sampling with error tolerance. Our analytical framework offers fresh perspectives on the complexity of score estimation at various time points, as denoted by the properties of the auxiliary distribution.

We introduce a cyclic proof system for the two-way alternation-free modal $\mu$-calculus. The system manipulates one-sided Gentzen sequents and locally deals with the backwards modalities by allowing analytic applications of the cut rule. The global effect of backwards modalities on traces is handled by making the semantics relative to a specific strategy of the opponent in the evaluation game. This allows us to augment sequents by so-called trace atoms, describing traces that the proponent can construct against the opponent's strategy. The idea for trace atoms comes from Vardi's reduction of alternating two-way automata to deterministic one-way automata. Using the multi-focus annotations introduced earlier by Marti and Venema, we turn this trace-based system into a path-based system. We prove that our system is sound for all sequents and complete for sequents not containing trace atoms.

Synthetic time series are often used in practical applications to augment the historical time series dataset for better performance of machine learning algorithms, amplify the occurrence of rare events, and also create counterfactual scenarios described by the time series. Distributional-similarity (which we refer to as realism) as well as the satisfaction of certain numerical constraints are common requirements in counterfactual time series scenario generation requests. For instance, the US Federal Reserve publishes synthetic market stress scenarios given by the constrained time series for financial institutions to assess their performance in hypothetical recessions. Existing approaches for generating constrained time series usually penalize training loss to enforce constraints, and reject non-conforming samples. However, these approaches would require re-training if we change constraints, and rejection sampling can be computationally expensive, or impractical for complex constraints. In this paper, we propose a novel set of methods to tackle the constrained time series generation problem and provide efficient sampling while ensuring the realism of generated time series. In particular, we frame the problem using a constrained optimization framework and then we propose a set of generative methods including ``GuidedDiffTime'', a guided diffusion model to generate realistic time series. Empirically, we evaluate our work on several datasets for financial and energy data, where incorporating constraints is critical. We show that our approaches outperform existing work both qualitatively and quantitatively. Most importantly, we show that our ``GuidedDiffTime'' model is the only solution where re-training is not necessary for new constraints, resulting in a significant carbon footprint reduction.

Transshipment, also known under the names of earth mover's distance, uncapacitated min-cost flow, or Wasserstein's metric, is an important and well-studied problem that asks to find a flow of minimum cost that routes a general demand vector. Adding to its importance, recent advancements in our understanding of algorithms for transshipment have led to breakthroughs for the fundamental problem of computing shortest paths. Specifically, the recent near-optimal $(1+\varepsilon)$-approximate single-source shortest path algorithms in the parallel and distributed settings crucially solve transshipment as a central step of their approach. The key property that differentiates transshipment from other similar problems like shortest path is the so-called \emph{boosting}: one can boost a (bad) approximate solution to a near-optimal $(1 + \varepsilon)$-approximate solution. This conceptually reduces the problem to finding an approximate solution. However, not all approximations can be boosted -- there have been several proposed approaches that were shown to be susceptible to boosting, and a few others where boosting was left as an open question. The main takeaway of our paper is that any black-box $\alpha$-approximate transshipment solver that computes a \emph{dual} solution can be boosted to an $(1 + \varepsilon)$-approximate solver. Moreover, we significantly simplify and decouple previous approaches to transshipment (in sequential, parallel, and distributed settings) by showing all of them (implicitly) obtain approximate dual solutions. Our analysis is very simple and relies only on the well-known multiplicative weights framework. Furthermore, to keep the paper completely self-contained, we provide a new (and arguably much simpler) analysis of multiplicative weights that leverages well-known optimization tools to bypass the ad-hoc calculations used in the standard analyses.

We consider the optimization of a smooth and strongly convex objective using constant step-size stochastic gradient descent (SGD) and study its properties through the prism of Markov chains. We show that, for unbiased gradient estimates with mildly controlled variance, the iteration converges to an invariant distribution in total variation distance. We also establish this convergence in Wasserstein-2 distance in a more general setting compared to previous work. Thanks to the invariance property of the limit distribution, our analysis shows that the latter inherits sub-Gaussian or sub-exponential concentration properties when these hold true for the gradient. This allows the derivation of high-confidence bounds for the final estimate. Finally, under such conditions in the linear case, we obtain a dimension-free deviation bound for the Polyak-Ruppert average of a tail sequence. All our results are non-asymptotic and their consequences are discussed through a few applications.

Noise is a part of data whether the data is from measurement, experiment or ... A few techniques are suggested for noise reduction to improve the data quality in recent years some of which are based on wavelet, orthogonalization and neural networks. The computational cost of existing methods are more than expected and that's why their application in some cases is not beneficial. In this paper, we suggest a low cost techniques based on special linear algebra structures (tridiagonal systems) to improve the signal quality. In this method, we suggest a tridiagonal model for the noise around the most noisy elements. To update the predicted noise, the algorithm is equipped with a learning/feedback approach. The details are described below and based on presented numerical results this algorithm is successful in computing the noise with lower MSE (mean squared error) in computation time specially when the data size is lower than 5000. Our algorithm is used for low-range noise while for high-range noise it is sufficient to use the presented algorithm in hybrid with moving average. The algorithm is implemented in MATLAB 2019b on a computer with Windows 11 having 8GB RAM. It is then tested over many randomly generated experiments. The numerical results confirm the efficiency of presented algorithm in most cases in comparison with existing methods.

For a given polygonal region $P$, the Lawn Mowing Problem (LMP) asks for a shortest tour $T$ that gets within Euclidean distance 1/2 of every point in $P$; this is equivalent to computing a shortest tour for a unit-diameter cutter $C$ that covers all of $P$. As a generalization of the Traveling Salesman Problem, the LMP is NP-hard; unlike the discrete TSP, however, the LMP has defied efforts to achieve exact solutions, due to its combination of combinatorial complexity with continuous geometry. We provide a number of new contributions that provide insights into the involved difficulties, as well as positive results that enable both theoretical and practical progress. (1) We show that the LMP is algebraically hard: it is not solvable by radicals over the field of rationals, even for the simple case in which $P$ is a $2\times 2$ square. This implies that it is impossible to compute exact optimal solutions under models of computation that rely on elementary arithmetic operations and the extraction of $k$th roots, and explains the perceived practical difficulty. (2) We exploit this algebraic analysis for the natural class of polygons with axis-parallel edges and integer vertices (i.e., polyominoes), highlighting the relevance of turn-cost minimization for Lawn Mowing tours, and leading to a general construction method for feasible tours. (3) We show that this construction method achieves theoretical worst-case guarantees that improve previous approximation factors for polyominoes. (4) We demonstrate the practical usefulness \emph{beyond polyominoes} by performing an extensive practical study on a spectrum of more general benchmark polygons: We obtain solutions that are better than the previous best values by Fekete et al., for instance sizes up to $20$ times larger.

We consider spin systems on general $n$-vertex graphs of unbounded degree and explore the effects of spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral independence is a novel way of quantifying the decay of correlations in spin system models, which has significantly advanced the study of Markov chains for spin systems. We prove that whenever spectral independence holds, the popular Swendsen--Wang dynamics for the $q$-state ferromagnetic Potts model on graphs of maximum degree $\Delta$, where $\Delta$ is allowed to grow with $n$, converges in $O((\Delta \log n)^c)$ steps where $c > 0$ is a constant independent of $\Delta$ and $n$. We also show a similar mixing time bound for the block dynamics of general spin systems, again assuming that spectral independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore model on bipartite graphs, we show that spectral independence implies that the mixing time of the systematic scan dynamics is $O(\Delta^c \log n)$ for a constant $c>0$ independent of $\Delta$ and $n$. Systematic scan dynamics are widely popular but are notoriously difficult to analyze. Our result implies optimal $O(\log n)$ mixing time bounds for any systematic scan dynamics of the ferromagnetic Ising model on general graphs up to the tree uniqueness threshold. Our main technical contribution is an improved factorization of the entropy functional: this is the common starting point for all our proofs. Specifically, we establish the so-called $k$-partite factorization of entropy with a constant that depends polynomially on the maximum degree of the graph.

北京阿比特科技有限公司