Vehicle pose estimation with LiDAR is essential in the perception technology of autonomous driving. However, due to incomplete observation measurements and sparsity of the LiDAR point cloud, it is challenging to achieve satisfactory pose extraction based on 3D LiDAR by using the existing pose estimation methods. In addition, the requirement for real-time performance further increases the difficulty of the pose estimation task. In this paper, we proposed a novel convex hull-based vehicle pose estimation method. The extracted 3D cluster is reduced to the convex hull, reducing the computation burden and retaining contour information. Then a novel criterion based on the minimum occlusion area is developed for the search-based algorithm, which can achieve accurate pose estimation. This criterion also makes the proposed algorithm especially suitable for obstacle avoidance. The proposed algorithm is validated on the KITTI dataset and a manually labeled dataset acquired at an industrial park. The results show that our proposed method can achieve better accuracy than the state-of-the-art pose estimation method while maintaining real-time speed.
Large Language Models (LLMs) have shown promise in automated program reasoning, a crucial aspect of many security tasks. However, existing LLM architectures for code are often borrowed from other domains like natural language processing, raising concerns about their generalization and robustness to unseen code. A key generalization challenge is to incorporate the knowledge of code semantics, including control and data flow, into the LLM architectures. Drawing inspiration from examples of convolution layers exploiting translation symmetry, we explore how code symmetries can enhance LLM architectures for program analysis and modeling. We present a rigorous group-theoretic framework that formally defines code symmetries as semantics-preserving transformations and provides techniques for precisely reasoning about symmetry preservation within LLM architectures. Using this framework, we introduce a novel variant of self-attention that preserves program symmetries, demonstrating its effectiveness in generalization and robustness through detailed experimental evaluations across different binary and source code analysis tasks. Overall, our code symmetry framework offers rigorous and powerful reasoning techniques that can guide the future development of specialized LLMs for code and advance LLM-guided program reasoning tasks.
Robust obstacle avoidance is one of the critical steps for successful goal-driven indoor navigation tasks.Due to the obstacle missing in the visual image and the possible missed detection issue, visual image-based obstacle avoidance techniques still suffer from unsatisfactory robustness. To mitigate it, in this paper, we propose a novel implicit obstacle map-driven indoor navigation framework for robust obstacle avoidance, where an implicit obstacle map is learned based on the historical trial-and-error experience rather than the visual image. In order to further improve the navigation efficiency, a non-local target memory aggregation module is designed to leverage a non-local network to model the intrinsic relationship between the target semantic and the target orientation clues during the navigation process so as to mine the most target-correlated object clues for the navigation decision. Extensive experimental results on AI2-Thor and RoboTHOR benchmarks verify the excellent obstacle avoidance and navigation efficiency of our proposed method. The core source code is available at //github.com/xwaiyy123/object-navigation.
Membership Inference Attack (MIA) identifies whether a record exists in a machine learning model's training set by querying the model. MIAs on the classic classification models have been well-studied, and recent works have started to explore how to transplant MIA onto generative models. Our investigation indicates that existing MIAs designed for generative models mainly depend on the overfitting in target models. However, overfitting can be avoided by employing various regularization techniques, whereas existing MIAs demonstrate poor performance in practice. Unlike overfitting, memorization is essential for deep learning models to attain optimal performance, making it a more prevalent phenomenon. Memorization in generative models leads to an increasing trend in the probability distribution of generating records around the member record. Therefore, we propose a Probabilistic Fluctuation Assessing Membership Inference Attack (PFAMI), a black-box MIA that infers memberships by detecting these trends via analyzing the overall probabilistic fluctuations around given records. We conduct extensive experiments across multiple generative models and datasets, which demonstrate PFAMI can improve the attack success rate (ASR) by about 27.9% when compared with the best baseline.
PDDLStream solvers have recently emerged as viable solutions for Task and Motion Planning (TAMP) problems, extending PDDL to problems with continuous action spaces. Prior work has shown how PDDLStream problems can be reduced to a sequence of PDDL planning problems, which can then be solved using off-the-shelf planners. However, this approach can suffer from long runtimes. In this paper we propose LAZY, a solver for PDDLStream problems that maintains a single integrated search over action skeletons, which gets progressively more geometrically informed, as samples of possible motions are lazily drawn during motion planning. We explore how learned models of goal-directed policies and current motion sampling data can be incorporated in LAZY to adaptively guide the task planner. We show that this leads to significant speed-ups in the search for a feasible solution evaluated over unseen test environments of varying numbers of objects, goals, and initial conditions. We evaluate our TAMP approach by comparing to existing solvers for PDDLStream problems on a range of simulated 7DoF rearrangement/manipulation problems.
Score-based explainable machine-learning techniques are often used to understand the logic behind black-box models. However, such explanation techniques are often computationally expensive, which limits their application in time-critical contexts. Therefore, we propose and investigate the use of computationally less costly regression models for approximating the output of score-based explanation techniques, such as SHAP. Moreover, validity guarantees for the approximated values are provided by the employed inductive conformal prediction framework. We propose several non-conformity measures designed to take the difficulty of approximating the explanations into account while keeping the computational cost low. We present results from a large-scale empirical investigation, in which the approximate explanations generated by our proposed models are evaluated with respect to efficiency (interval size). The results indicate that the proposed method can significantly improve execution time compared to the fast version of SHAP, TreeSHAP. The results also suggest that the proposed method can produce tight intervals, while providing validity guarantees. Moreover, the proposed approach allows for comparing explanations of different approximation methods and selecting a method based on how informative (tight) are the predicted intervals.
Over the last few decades, Smartphone technology has seen significant improvements. Enhancements specific to built-in Inertial Measurement Units (IMUs) and other dedicated sensors of the smartphones(which are often available as default) such as- Accelerometer, Gyroscope, Magnetometer, Fingerprint reader, Proximity and Ambient light sensors have made devices smarter and the interaction seamless. Gesture recognition using these smart phones have been experimented with many techniques. In this solution, a Recurrent Neural Network (RNN) approach, LSTM (Long-Short Term Memory Cells) has been used to classify ten different gestures based on data from Accelerometer and Gyroscope. Selection of sensor data (Accelerometer and Gyroscope) was based on the ones that provided maximum information regarding the movement and orientation of the phone. Various models were experimented in this project, the results of which are presented in the later sections. Furthermore, the properties and characteristics of the collected data were studied and a set of improvements have been suggested in the future work section.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.