Research on Korean grammatical error correction (GEC) is limited, compared to other major languages such as English. We attribute this problematic circumstance to the lack of a carefully designed evaluation benchmark for Korean GEC. In this work, we collect three datasets from different sources (Kor-Lang8, Kor-Native, and Kor-Learner) that covers a wide range of Korean grammatical errors. Considering the nature of Korean grammar, We then define 14 error types for Korean and provide KAGAS (Korean Automatic Grammatical error Annotation System), which can automatically annotate error types from parallel corpora. We use KAGAS on our datasets to make an evaluation benchmark for Korean, and present baseline models trained from our datasets. We show that the model trained with our datasets significantly outperforms the currently used statistical Korean GEC system (Hanspell) on a wider range of error types, demonstrating the diversity and usefulness of the datasets. The implementations and datasets are open-sourced.
The ability to detect and analyze failed executions automatically is crucial for an explainable and robust robotic system. Recently, Large Language Models (LLMs) have demonstrated strong reasoning abilities on textual inputs. To leverage the power of LLM for robot failure explanation, we introduce a framework REFLECT, which queries LLM to identify and explain robot failures given a hierarchical summary of robot past experiences generated from multi-sensory data. Conditioned on the explanation, a task planner will generate an executable plan for the robot to correct the failure and complete the task. To systematically evaluate the framework, we create the RoboFail dataset with a variety of tasks and failure scenarios. We demonstrate that the LLM-based framework is able to generate informative failure explanations that assist successful correction planning. Videos and code available at: //roboreflect.github.io/.
Despite recent advancements in speech emotion recognition (SER) models, state-of-the-art deep learning (DL) approaches face the challenge of the limited availability of annotated data. Large language models (LLMs) have revolutionised our understanding of natural language, introducing emergent properties that broaden comprehension in language, speech, and vision. This paper examines the potential of LLMs to annotate abundant speech data, aiming to enhance the state-of-the-art in SER. We evaluate this capability across various settings using publicly available speech emotion classification datasets. Leveraging ChatGPT, we experimentally demonstrate the promising role of LLMs in speech emotion data annotation. Our evaluation encompasses single-shot and few-shots scenarios, revealing performance variability in SER. Notably, we achieve improved results through data augmentation, incorporating ChatGPT-annotated samples into existing datasets. Our work uncovers new frontiers in speech emotion classification, highlighting the increasing significance of LLMs in this field moving forward.
Automated logging statement generation techniques facilitate developers in writing appropriate logging statements that document software behaviors. Current retrieval-based and learning-based logging methods fail to provide accurate logging statements in complex software. Although existing large language models (LLMs) might be a good fit for the task due to their great success in natural language generation and programming language comprehension, their effectiveness and generalization capabilities have not been explored. To this end, this paper performs the first extensive study on applying LLMs for logging statement generation. We build LogBench, the first logging statement generation dataset. On LogBench, we evaluate the effectiveness and generalization capabilities of eight state-of-the-art LLMs, which include general-purpose and code-specific models ranging from 60M to 175B in size. Specifically, we evaluate LLM's logging effectiveness by studying 1) their ability to decide logging ingredients, 2) the impact of the internal characteristics of LLMs, and 3) the influence of external factors. We further evaluate LLM's logging generalization capabilities using unseen data derived from code transformation techniques. Our study demonstrates that existing LLMs fall short of practical requirements for generating proper logging statement texts. We also disclose the impact of internal characteristics and external factors for LLMs in automated logging. In addition, we observe that existing LLMs cannot generalize to logging unseen code, revealing their unsatisfactory generalization capabilities. Based on our findings, we further discuss three implications that can enhance logging statement generation in the future, such as developing a unified metric for logging quality, incorporating shareable code knowledge into LLMs, and devising suitable prompts.
We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at //github.com/paihengxu/XICL.
Dense video captioning, a task of localizing meaningful moments and generating relevant captions for videos, often requires a large, expensive corpus of annotated video segments paired with text. In an effort to minimize the annotation cost, we propose ZeroTA, a novel method for dense video captioning in a zero-shot manner. Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time by optimizing solely on the input. This is accomplished by introducing a soft moment mask that represents a temporal segment in the video and jointly optimizing it with the prefix parameters of a language model. This joint optimization aligns a frozen language generation model (i.e., GPT-2) with a frozen vision-language contrastive model (i.e., CLIP) by maximizing the matching score between the generated text and a moment within the video. We also introduce a pairwise temporal IoU loss to let a set of soft moment masks capture multiple distinct events within the video. Our method effectively discovers diverse significant events within the video, with the resulting captions appropriately describing these events. The empirical results demonstrate that ZeroTA surpasses zero-shot baselines and even outperforms the state-of-the-art few-shot method on the widely-used benchmark ActivityNet Captions. Moreover, our method shows greater robustness compared to supervised methods when evaluated in out-of-domain scenarios. This research provides insight into the potential of aligning widely-used models, such as language generation models and vision-language models, to unlock a new capability: understanding temporal aspects of videos.
In this paper, we introduce the BeaverTails dataset, aimed at fostering research on safety alignment in large language models (LLMs). This dataset uniquely separates annotations of helpfulness and harmlessness for question-answering pairs, thus offering distinct perspectives on these crucial attributes. In total, we have compiled safety meta-labels for 30,207 question-answer (QA) pairs and gathered 30,144 pairs of expert comparison data for both the helpfulness and harmlessness metrics. We further showcase applications of BeaverTails in content moderation and reinforcement learning with human feedback (RLHF), emphasizing its potential for practical safety measures in LLMs. We believe this dataset provides vital resources for the community, contributing towards the safe development and deployment of LLMs. Our project page is available at the following URL: //sites.google.com/view/pku-beavertails.
ASR error correction continues to serve as an important part of post-processing for speech recognition systems. Traditionally, these models are trained with supervised training using the decoding results of the underlying ASR system and the reference text. This approach is computationally intensive and the model needs to be re-trained when switching the underlying ASR model. Recent years have seen the development of large language models and their ability to perform natural language processing tasks in a zero-shot manner. In this paper, we take ChatGPT as an example to examine its ability to perform ASR error correction in the zero-shot or 1-shot settings. We use the ASR N-best list as model input and propose unconstrained error correction and N-best constrained error correction methods. Results on a Conformer-Transducer model and the pre-trained Whisper model show that we can largely improve the ASR system performance with error correction using the powerful ChatGPT model.
Large-scale language models (LLMs) has shown remarkable capability in various of Natural Language Processing (NLP) tasks and attracted lots of attention recently. However, some studies indicated that large language models fail to achieve promising result beyond the state-of-the-art models in English grammatical error correction (GEC) tasks. In this report, we aim to explore the how large language models perform on Chinese grammatical error correction tasks and provide guidance for future work. We conduct experiments with 3 different LLMs of different model scale on 4 Chinese GEC dataset. Our experimental results indicate that the performances of LLMs on automatic evaluation metrics falls short of the previous sota models because of the problem of over-correction. Furthermore, we also discover notable variations in the performance of LLMs when evaluated on different data distributions. Our findings demonstrates that further investigation is required for the application of LLMs on Chinese GEC task.
There is abundant observational data in the software engineering domain, whereas running large-scale controlled experiments is often practically impossible. Thus, most empirical studies can only report statistical correlations -- instead of potentially more insightful and robust causal relations. To support analyzing purely observational data for causal relations, and to assess any differences between purely predictive and causal models of the same data, this paper discusses some novel techniques based on structural causal models (such as directed acyclic graphs of causal Bayesian networks). Using these techniques, one can rigorously express, and partially validate, causal hypotheses; and then use the causal information to guide the construction of a statistical model that captures genuine causal relations -- such that correlation does imply causation. We apply these ideas to analyzing public data about programmer performance in Code Jam, a large world-wide coding contest organized by Google every year. Specifically, we look at the impact of different programming languages on a participant's performance in the contest. While the overall effect associated with programming languages is weak compared to other variables -- regardless of whether we consider correlational or causal links -- we found considerable differences between a purely associational and a causal analysis of the very same data. The takeaway message is that even an imperfect causal analysis of observational data can help answer the salient research questions more precisely and more robustly than with just purely predictive techniques -- where genuine causal effects may be confounded.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.