We propose a reinforcement learning based method to identify important configurations that connect reactant and product states along chemical reaction paths. By shooting multiple trajectories from these configurations, we can generate an ensemble of configurations that concentrate on the transition path ensemble. This configuration ensemble can be effectively employed in a neural network-based partial differential equation solver to obtain an approximation solution of a restricted Backward Kolmogorov equation, even when the dimension of the problem is very high. The resulting solution, known as the committor function, encodes mechanistic information for the reaction and can in turn be used to evaluate reaction rates.
Scientific workflows are designed as directed acyclic graphs (DAGs) and consist of multiple dependent task definitions. They are executed over a large amount of data, often resulting in thousands of tasks with heterogeneous compute requirements and long runtimes, even on cluster infrastructures. In order to optimize the workflow performance, enough resources, e.g., CPU and memory, need to be provisioned for the respective tasks. Typically, workflow systems rely on user resource estimates which are known to be highly error-prone and can result in over- or underprovisioning. While resource overprovisioning leads to high resource wastage, underprovisioning can result in long runtimes or even failed tasks. In this paper, we propose two different reinforcement learning approaches based on gradient bandits and Q-learning, respectively, in order to minimize resource wastage by selecting suitable CPU and memory allocations. We provide a prototypical implementation in the well-known scientific workflow management system Nextflow, evaluate our approaches with five workflows, and compare them against the default resource configurations and a state-of-the-art feedback loop baseline. The evaluation yields that our reinforcement learning approaches significantly reduce resource wastage compared to the default configuration. Further, our approaches also reduce the allocated CPU hours compared to the state-of-the-art feedback loop by 6.79% and 24.53%.
We study a class of reinforcement learning problems where the reward signals for policy learning are generated by a discriminator that is dependent on and jointly optimized with the policy. This interdependence between the policy and the discriminator leads to an unstable learning process because reward signals from an immature discriminator are noisy and impede policy learning, and conversely, an under-optimized policy impedes discriminator learning. We call this learning setting \textit{Internally Rewarded Reinforcement Learning} (IRRL) as the reward is not provided directly by the environment but \textit{internally} by the discriminator. In this paper, we formally formulate IRRL and present a class of problems that belong to IRRL. We theoretically derive and empirically analyze the effect of the reward function in IRRL and based on these analyses propose the clipped linear reward function. Experimental results show that the proposed reward function can consistently stabilize the training process by reducing the impact of reward noise, which leads to faster convergence and higher performance compared with baselines in diverse tasks.
The dynamic vehicle dispatching problem corresponds to deciding which vehicles to assign to requests that arise stochastically over time and space. It emerges in diverse areas, such as in the assignment of trucks to loads to be transported; in emergency systems; and in ride-hailing services. In this paper, we model the problem as a semi-Markov decision process, which allows us to treat time as continuous. In this setting, decision epochs coincide with discrete events whose time intervals are random. We argue that an event-based approach substantially reduces the combinatorial complexity of the decision space and overcomes other limitations of discrete-time models often proposed in the literature. In order to test our approach, we develop a new discrete-event simulator and use double deep q-learning to train our decision agents. Numerical experiments are carried out in realistic scenarios using data from New York City. We compare the policies obtained through our approach with heuristic policies often used in practice. Results show that our policies exhibit better average waiting times, cancellation rates and total service times, with reduction in average waiting times of up to 50% relative to the other tested heuristic policies.
While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.
Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.