亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Wasserstein gradient flows on probability measures have found a host of applications in various optimization problems. They typically arise as the continuum limit of exchangeable particle systems evolving by some mean-field interaction involving a gradient-type potential. However, in many problems, such as in multi-layer neural networks, the so-called particles are edge weights on large graphs whose nodes are exchangeable. Such large graphs are known to converge to continuum limits called graphons as their size grow to infinity. We show that the Euclidean gradient flow of a suitable function of the edge-weights converges to a novel continuum limit given by a curve on the space of graphons that can be appropriately described as a gradient flow or, more technically, a curve of maximal slope. Several natural functions on graphons, such as homomorphism functions and the scalar entropy, are covered by our set-up, and the examples have been worked out in detail.

相關內容

We aim to find conditions on two Hilbert space operators $A$ and $B$ under which the expression $AX-XB$ having low rank forces the operator $X$ itself to admit a good low rank approximation. It is known that this can be achieved when $A$ and $B$ are normal and have well-separated spectra. In this paper, we relax this normality condition, using the idea of operator dilations. The basic problem then becomes the lifting of Sylvester equations, which is reminiscent of the classical commutant lifting theorem and its variations. Our approach also allows us to show that the (factored) alternating direction implicit method for solving Sylvester equaftions $AX-XB=C$ does not require too many iterations, even without requiring $A$ to be normal.

To minimize the average of a set of log-convex functions, the stochastic Newton method iteratively updates its estimate using subsampled versions of the full objective's gradient and Hessian. We contextualize this optimization problem as sequential Bayesian inference on a latent state-space model with a discriminatively-specified observation process. Applying Bayesian filtering then yields a novel optimization algorithm that considers the entire history of gradients and Hessians when forming an update. We establish matrix-based conditions under which the effect of older observations diminishes over time, in a manner analogous to Polyak's heavy ball momentum. We illustrate various aspects of our approach with an example and review other relevant innovations for the stochastic Newton method.

Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models.

In this paper we develop a numerical method for efficiently approximating solutions of certain Zakai equations in high dimensions. The key idea is to transform a given Zakai SPDE into a PDE with random coefficients. We show that under suitable regularity assumptions on the coefficients of the Zakai equation, the corresponding random PDE admits a solution random field which, for almost all realizations of the random coefficients, can be written as a classical solution of a linear parabolic PDE. This makes it possible to apply the Feynman--Kac formula to obtain an efficient Monte Carlo scheme for computing approximate solutions of Zakai equations. The approach achieves good results in up to 25 dimensions with fast run times.

This work is concerned with kinetic equations with velocity of constant magnitude. We propose a quadrature method of moments based on the Poisson kernel, called Poisson-EQMOM. The derived moment closure systems are well defined for all physically relevant moments and the resultant approximations of the distribution function converge as the number of moments goes to infinity. The convergence makes our method stand out from most existing moment methods. Moreover, we devise a delicate moment inversion algorithm. As an application, the Vicsek model is studied for overdamped active particles. Then the Poisson-EQMOM is validated with a series of numerical tests including spatially homogeneous, one-dimensional and two-dimensional problems.

Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.

Simulation of wave propagation in poroelastic half-spaces presents a common challenge in fields like geomechanics and biomechanics, requiring Absorbing Boundary Conditions (ABCs) at the semi-infinite space boundaries. Perfectly Matched Layers (PML) are a popular choice due to their excellent wave absorption properties. However, PML implementation can lead to problems with unknown stresses or strains, time convolutions, or PDE systems with Auxiliary Differential Equations (ADEs), which increases computational complexity and resource consumption. This article presents two new PML formulations for arbitrary poroelastic domains. The first formulation is a fully-mixed form that employs time-history variables instead of ADEs, reducing the number of unknowns and mathematical operations. The second formulation is a hybrid form that restricts the fully-mixed formulation to the PML domain, resulting in smaller matrices for the solver while preserving governing equations in the interior domain. The fully-mixed formulation introduces three scalar variables over the whole domain, whereas the hybrid form confines them to the PML domain. The proposed formulations were tested in three numerical experiments in geophysics using realistic parameters for soft sites with free surfaces. The results were compared with numerical solutions from extended domains and simpler ABCs, such as paraxial approximation, demonstrating the accuracy, efficiency, and precision of the proposed methods. The article also discusses the applicability of these methods to complex media and their extension to the Multiaxial PML formulation. The codes for the simulations are available for download from \url{//github.com/hmella/POROUS-HYBRID-PML}.

Sparse regression has emerged as a popular technique for learning dynamical systems from temporal data, beginning with the SINDy (Sparse Identification of Nonlinear Dynamics) framework proposed by arXiv:1509.03580. Quantifying the uncertainty inherent in differential equations learned from data remains an open problem, thus we propose leveraging recent advances in statistical inference for sparse regression to address this issue. Focusing on systems of ordinary differential equations (ODEs), SINDy assumes that each equation is a parsimonious linear combination of a few candidate functions, such as polynomials, and uses methods such as sequentially-thresholded least squares or the Lasso to identify a small subset of these functions that govern the system's dynamics. We instead employ bias-corrected versions of the Lasso and ridge regression estimators, as well as an empirical Bayes variable selection technique known as SEMMS, to estimate each ODE as a linear combination of terms that are statistically significant. We demonstrate through simulations that this approach allows us to recover the functional terms that correctly describe the dynamics more often than existing methods that do not account for uncertainty.

This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.

Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.

北京阿比特科技有限公司