亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce two novel visualization designs to support practitioners in performing identification and discrimination tasks on large value ranges (i.e., several orders of magnitude) in time-series data: (1) The order of magnitude horizon graph, which extends the classic horizon graph; and (2) the order of magnitude line chart, which adapts the log-line chart. These new visualization designs visualize large value ranges by explicitly splitting the mantissa m and exponent e of a value v = m * 10e . We evaluate our novel designs against the most relevant state-of-the-art visualizations in an empirical user study. It focuses on four main tasks commonly employed in the analysis of time-series and large value ranges visualization: identification, discrimination, estimation, and trend detection. For each task we analyse error, confidence, and response time. The new order of magnitude horizon graph performs better or equal to all other designs in identification, discrimination, and estimation tasks. Only for trend detection tasks, the more traditional horizon graphs reported better performance. Our results are domain-independent, only requiring time-series data with large value ranges.

相關內容

One of the major challenges in training deep neural networks for text-to-image generation is the significant linguistic discrepancy between ground-truth captions of each image in most popular datasets. The large difference in the choice of words in such captions results in synthesizing images that are semantically dissimilar to each other and to their ground-truth counterparts. Moreover, existing models either fail to generate the fine-grained details of the image or require a huge number of parameters that renders them inefficient for text-to-image synthesis. To fill this gap in the literature, we propose using the contrastive learning approach with a novel combination of two loss functions: fake-to-fake loss to increase the semantic consistency between generated images of the same caption, and fake-to-real loss to reduce the gap between the distributions of real images and fake ones. We test this approach on two baseline models: SSAGAN and AttnGAN (with style blocks to enhance the fine-grained details of the images.) Results show that our approach improves the qualitative results on AttnGAN with style blocks on the CUB dataset. Additionally, on the challenging COCO dataset, our approach achieves competitive results against the state-of-the-art Lafite model, outperforms the FID score of SSAGAN model by 44.

In this study, we introduce T2M-HiFiGPT, a novel conditional generative framework for synthesizing human motion from textual descriptions. This framework is underpinned by a Residual Vector Quantized Variational AutoEncoder (RVQ-VAE) and a double-tier Generative Pretrained Transformer (GPT) architecture. We demonstrate that our CNN-based RVQ-VAE is capable of producing highly accurate 2D temporal-residual discrete motion representations. Our proposed double-tier GPT structure comprises a temporal GPT and a residual GPT. The temporal GPT efficiently condenses information from previous frames and textual descriptions into a 1D context vector. This vector then serves as a context prompt for the residual GPT, which generates the final residual discrete indices. These indices are subsequently transformed back into motion data by the RVQ-VAE decoder. To mitigate the exposure bias issue, we employ straightforward code corruption techniques for RVQ and a conditional dropout strategy, resulting in enhanced synthesis performance. Remarkably, T2M-HiFiGPT not only simplifies the generative process but also surpasses existing methods in both performance and parameter efficacy, including the latest diffusion-based and GPT-based models. On the HumanML3D and KIT-ML datasets, our framework achieves exceptional results across nearly all primary metrics. We further validate the efficacy of our framework through comprehensive ablation studies on the HumanML3D dataset, examining the contribution of each component. Our findings reveal that RVQ-VAE is more adept at capturing precise 3D human motion with comparable computational demand compared to its VQ-VAE counterparts. As a result, T2M-HiFiGPT enables the generation of human motion with significantly increased accuracy, outperforming recent state-of-the-art approaches such as T2M-GPT and Att-T2M.

The intersection of connection graphs and discrete optimal transport presents a novel paradigm for understanding complex graphs and node interactions. In this paper, we delve into this unexplored territory by focusing on the Beckmann problem within the context of connection graphs. Our study establishes feasibility conditions for the resulting convex optimization problem on connection graphs. Furthermore, we establish strong duality for the conventional Beckmann problem, and extend our analysis to encompass strong duality and duality correspondence for a quadratically regularized variant. To put our findings into practice, we implement the regularized problem using gradient descent, enabling a practical approach to solving this complex problem. We showcase optimal flows and solutions, providing valuable insights into the real-world implications of our theoretical framework.

Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples. Previous studies argued that parametric classifiers are prone to overfitting to seen categories, and endorsed using a non-parametric classifier formed with semi-supervised k-means. However, in this study, we investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem. We demonstrate that two prediction biases exist: the classifier tends to predict seen classes more often, and produces an imbalanced distribution across seen and novel categories. Based on these findings, we propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers. We hope the investigation and proposed simple framework can serve as a strong baseline to facilitate future studies in this field. Our code is available at: //github.com/CVMI-Lab/SimGCD.

This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.

To empower smart contracts with the promising capabilities of cryptography, Ethereum officially introduced a set of cryptographic APIs that facilitate basic cryptographic operations within smart contracts, such as elliptic curve operations. However, since developers are not necessarily cryptography experts, requiring them to directly interact with these basic APIs has caused real-world security issues and potential usability challenges. To guide future research and solutions to these challenges, we conduct the first empirical study on Ethereum cryptographic practices. Through the analysis of 91,484,856 Ethereum transactions, 500 crypto-related contracts, and 483 StackExchange posts, we provide the first in-depth look at cryptographic tasks developers need to accomplish and identify five categories of obstacles they encounter. Furthermore, we conduct an online survey with 78 smart contract practitioners to explore their perspectives on these obstacles and elicit the underlying reasons. We find that more than half of practitioners face more challenges in cryptographic tasks compared to general business logic in smart contracts. Their feedback highlights the gap between low-level cryptographic APIs and high-level tasks they need to accomplish, emphasizing the need for improved cryptographic APIs, task-based templates, and effective assistance tools. Based on these findings, we provide practical implications for further improvements and outline future research directions.

In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.

This article provides an analytical framework for how to simulate human-like thought processes within a computer. It describes how attention and memory should be structured, updated, and utilized to search for associative additions to the stream of thought. The focus is on replicating the dynamics of the mammalian working memory system, which features two forms of persistent activity: sustained firing (preserving information on the order of seconds) and synaptic potentiation (preserving information from minutes to hours). The article uses a series of over 40 original figures to systematically demonstrate how the iterative updating of these working memory stores provides functional structure to behavior, cognition, and consciousness. In an AI implementation, these two memory stores should be updated continuously and in an iterative fashion, meaning each state should preserve a proportion of the coactive representations from the state before it. Thus, the set of concepts in working memory will evolve gradually and incrementally over time. This makes each state a revised iteration of the preceding state and causes successive states to overlap and blend with respect to the information they contain. Transitions between states happen as persistent activity spreads activation energy throughout the hierarchical network searching long-term memory for the most appropriate representation to be added to the global workspace. The result is a chain of associatively linked intermediate states capable of advancing toward a solution or goal. Iterative updating is conceptualized here as an information processing strategy, a model of working memory, a theory of consciousness, and an algorithm for designing and programming artificial general intelligence.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司