As floods are a major and growing source of risk in urban areas, there is a necessity to improve flood risk management frameworks and civil protection through planning interventions that modify surface flow pathways and introduce storage. Despite the complexity of densely urbanised areas, modern flood models can represent urban features and flow characteristics to help researchers, local authorities, and insurance companies to develop and improve efficient flood risk frameworks to achieve resilience in cities. A cost-benefit driven source-receptor flood risk framework is developed in this study to identify (1) locations contributing to surface flooding (sources), (2) buildings and locations at high flood risk (receptors), (3) the cost-benefit nexus between the source and the receptor, and finally (4) ways to mitigate flooding at the receptor by adding Blue-Green Infrastructure (BGI) in critical locations. The analysis is based on five steps to identify the source and the receptor in a study area based on the flood exposure of buildings, damages arising from flooding and available green spaces with the best potential to add sustainable and resilient solutions to reduce flooding. The framework was developed using the detailed hydrodynamic model CityCAT in a case study of the city centre of Newcastle upon Tyne, UK. The novelty of this analysis is that firstly, multiple storm magnitudes (i.e. small and large floods) are used combined with a method to locate the areas and the buildings at flood risk and a prioritized set of best places to add interventions upstream and downstream. Secondly, planning decisions are informed by considering the benefit from reduced damages to properties and the cost to construct resilient BGI options rather than a restricted hydraulic analysis considering only flood depths and storages in isolation from real-world economics.
We consider unregularized robust M-estimators for linear models under Gaussian design and heavy-tailed noise, in the proportional asymptotics regime where the sample size n and the number of features p are both increasing such that $p/n \to \gamma\in (0,1)$. An estimator of the out-of-sample error of a robust M-estimator is analysed and proved to be consistent for a large family of loss functions that includes the Huber loss. As an application of this result, we propose an adaptive tuning procedure of the scale parameter $\lambda>0$ of a given loss function $\rho$: choosing$\hat \lambda$ in a given interval $I$ that minimizes the out-of-sample error estimate of the M-estimator constructed with loss $\rho_\lambda(\cdot) = \lambda^2 \rho(\cdot/\lambda)$ leads to the optimal out-of-sample error over $I$. The proof relies on a smoothing argument: the unregularized M-estimation objective function is perturbed, or smoothed, with a Ridge penalty that vanishes as $n\to+\infty$, and show that the unregularized M-estimator of interest inherits properties of its smoothed version.
In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions.
We propose, analyze, and test new iterative solvers for large-scale systems of linear algebraic equations arising from the finite element discretization of reduced optimality systems defining the finite element approximations to the solution of elliptic tracking-type distributed optimal control problems with both the standard $L_2$ and the more general energy regularizations. If we aim at an approximation of the given desired state $y_d$ by the computed finite element state $y_h$ that asymptotically differs from $y_d$ in the order of the best $L_2$ approximation under acceptable costs for the control, then the optimal choice of the regularization parameter $\varrho$ is linked to the mesh-size $h$ by the relations $\varrho=h^4$ and $\varrho=h^2$ for the $L_2$ and the energy regularization, respectively. For this setting, we can construct efficient parallel iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in case of adaptive mesh refinement. Similar results can be obtained for the space-time finite element discretization of the corresponding parabolic and hyperbolic optimal control problems.
Compared to large speech foundation models, small distilled models exhibit degraded noise robustness. The student's robustness can be improved by introducing noise at the inputs during pre-training. Despite this, using the standard distillation loss still yields a student with degraded performance. Thus, this paper proposes improving student robustness via distillation with correlation metrics. Teacher behavior is learned by maximizing the teacher and student cross-correlation matrix between their representations towards identity. Noise robustness is encouraged via the student's self-correlation minimization. The proposed method is agnostic of the teacher model and consistently outperforms the previous approach. This work also proposes an heuristic to weigh the importance of the two correlation terms automatically. Experiments show consistently better clean and noise generalization on Intent Classification, Keyword Spotting, and Automatic Speech Recognition tasks on SUPERB Challenge.
Air pollution is a result of multiple sources including both natural and anthropogenic activities. The rapid urbanization of the cities such as Bujumbura economic capital of Burundi, is one of these factors. The very first characterization of the spatio-temporal variability of PM2.5 in Bujumbura and the forecasting of PM2.5 concentration have been conducted in this paper using data collected during a year, from august 2022 to august 2023, by low cost sensors installed in Bujumbura city. For each commune, an hourly, daily and seasonal analysis were carried out and the results showed that the mass concentrations of PM2.5 in the three municipalities differ from one commune to another. The average hourly and annual PM2.5 concentrations exceed the World Health Organization standards. The range is between 28.3 and 35.0 microgram/m3 . In order to make prediction of PM2.5 concentration, an investigation of RNN with Long Short Term Memory (LSTM) has been undertaken.
Ensemble methods such as bagging and random forests are ubiquitous in various fields, from finance to genomics. Despite their prevalence, the question of the efficient tuning of ensemble parameters has received relatively little attention. This paper introduces a cross-validation method, ECV (Extrapolated Cross-Validation), for tuning the ensemble and subsample sizes in randomized ensembles. Our method builds on two primary ingredients: initial estimators for small ensemble sizes using out-of-bag errors and a novel risk extrapolation technique that leverages the structure of prediction risk decomposition. By establishing uniform consistency of our risk extrapolation technique over ensemble and subsample sizes, we show that ECV yields $\delta$-optimal (with respect to the oracle-tuned risk) ensembles for squared prediction risk. Our theory accommodates general ensemble predictors, only requires mild moment assumptions, and allows for high-dimensional regimes where the feature dimension grows with the sample size. As a practical case study, we employ ECV to predict surface protein abundances from gene expressions in single-cell multiomics using random forests. In comparison to sample-split cross-validation and $K$-fold cross-validation, ECV achieves higher accuracy avoiding sample splitting. At the same time, its computational cost is considerably lower owing to the use of the risk extrapolation technique. Additional numerical results validate the finite-sample accuracy of ECV for several common ensemble predictors under a computational constraint on the maximum ensemble size.
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to \textit{couple} the base and the target densities, whereby samples from the base are computed conditionally given samples from the target in a way that is different from (but does preclude) incorporating information about class labels or continuous embeddings. This enables us to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting.
Age-Period-Cohort (APC) models are well used in the context of modelling health and demographic data to produce smooth estimates of each time trend. When smoothing in the context of APC models, there are two main schools, frequentist using penalised smoothing splines, and Bayesian using random processes with little crossover between them. In this article, we clearly lay out the theoretical link between the two schools, provide examples using simulated and real data to highlight similarities and difference, and help a general APC user understand potentially inaccessible theory from functional analysis. As intuition suggests, both approaches lead to comparable and almost identical in-sample predictions, but random processes within a Bayesian approach might be beneficial for out-of-sample prediction as the sources of uncertainty are captured in a more complete way.
In a constant evolving world, change detection is of prime importance to keep updated maps. To better sense areas with complex geometry (urban areas in particular), considering 3D data appears to be an interesting alternative to classical 2D images. In this context, 3D point clouds (PCs), whether obtained through LiDAR or photogrammetric techniques, provide valuable information. While recent studies showed the considerable benefit of using deep learning-based methods to detect and characterize changes into raw 3D PCs, these studies rely on large annotated training data to obtain accurate results. The collection of these annotations are tricky and time-consuming. The availability of unsupervised or weakly supervised approaches is then of prime interest. In this paper, we propose an unsupervised method, called DeepCluster 3D Change Detection (DC3DCD), to detect and categorize multiclass changes at point level. We classify our approach in the unsupervised family given the fact that we extract in a completely unsupervised way a number of clusters associated with potential changes. Let us precise that in the end of the process, the user has only to assign a label to each of these clusters to derive the final change map. Our method builds upon the DeepCluster approach, originally designed for image classification, to handle complex raw 3D PCs and perform change segmentation task. An assessment of the method on both simulated and real public dataset is provided. The proposed method allows to outperform fully-supervised traditional machine learning algorithm and to be competitive with fully-supervised deep learning networks applied on rasterization of 3D PCs with a mean of IoU over classes of change of 57.06\% and 66.69\% for the simulated and the real datasets, respectively.
With the increasing demand of intelligent systems capable of operating in different contexts (e.g. users on the move) the correct interpretation of the user-need by such systems has become crucial to give consistent answers to the user questions. The most effective applications addressing such task are in the fields of natural language processing and semantic expansion of terms. These techniques are aimed at estimating the goal of an input query reformulating it as an intent, commonly relying on textual resources built exploiting different semantic relations like \emph{synonymy}, \emph{antonymy} and many others. The aim of this paper is to generate such resources using the labels of a given taxonomy as source of information. The obtained resources are integrated into a plain classifier for reformulating a set of input queries as intents and tracking the effect of each relation, in order to quantify the impact of each semantic relation on the classification. As an extension to this, the best tradeoff between improvement and noise introduction when combining such relations is evaluated. The assessment is made generating the resources and their combinations and using them for tuning the classifier which is used to reformulate the user questions as labels. The evaluation employs a wide and varied taxonomy as a use-case, exploiting its labels as basis for the semantic expansion and producing several corpora with the purpose of enhancing the pseudo-queries estimation.