The conditional Aalen--Johansen estimator, a general-purpose non-parametric estimator of conditional state occupation probabilities, is introduced. The estimator is applicable for any finite-state jump process and supports conditioning on external as well as internal covariate information. The conditioning feature permits for a much more detailed analysis of the distributional characteristics of the process. The estimator reduces to the conditional Kaplan--Meier estimator in the special case of a survival model and also englobes other, more recent, landmark estimators when covariates are discrete. Strong uniform consistency and asymptotic normality are established under lax moment conditions on the multivariate counting process, allowing in particular for an unbounded number of transitions.
Recent approaches to causal inference have focused on causal effects defined as contrasts between the distribution of counterfactual outcomes under hypothetical interventions on the nodes of a graphical model. In this article we develop theory for causal effects defined with respect to a different type of intervention, one which alters the information propagated through the edges of the graph. These information transfer interventions may be more useful than node interventions in settings in which causes are non-manipulable, for example when considering race or genetics as a causal agent. Furthermore, information transfer interventions allow us to define path-specific decompositions which are identified in the presence of treatment-induced mediator-outcome confounding, a practical problem whose general solution remains elusive. We prove that the proposed effects provide valid statistical tests of mechanisms, unlike popular methods based on randomized interventions on the mediator. We propose efficient non-parametric estimators for a covariance version of the proposed effects, using data-adaptive regression coupled with semi-parametric efficiency theory to address model misspecification bias while retaining $\sqrt{n}$-consistency and asymptotic normality. We illustrate the use of our methods in two examples using publicly available data.
The work of Kalman and Bucy has established a duality between filtering and optimal estimation in the context of time-continuous linear systems. This duality has recently been extended to time-continuous nonlinear systems in terms of an optimization problem constrained by a backward stochastic partial differential equation. Here we revisit this problem from the perspective of appropriate forward-backward stochastic differential equations. This approach sheds new light on the estimation problem and provides a unifying perspective. It is also demonstrated that certain formulations of the estimation problem lead to deterministic formulations similar to the linear Gaussian case as originally investigated by Kalman and Bucy.
Gaussian process regression underpins countless academic and industrial applications of machine learning and statistics, with maximum likelihood estimation routinely used to select appropriate parameters for the covariance kernel. However, it remains an open problem to establish the circumstances in which maximum likelihood estimation is well-posed, that is, when the predictions of the regression model are insensitive to small perturbations of the data. This article identifies scenarios where the maximum likelihood estimator fails to be well-posed, in that the predictive distributions are not Lipschitz in the data with respect to the Hellinger distance. These failure cases occur in the noiseless data setting, for any Gaussian process with a stationary covariance function whose lengthscale parameter is estimated using maximum likelihood. Although the failure of maximum likelihood estimation is part of Gaussian process folklore, these rigorous theoretical results appear to be the first of their kind. The implication of these negative results is that well-posedness may need to be assessed post-hoc, on a case-by-case basis, when maximum likelihood estimation is used to train a Gaussian process model.
Inference tasks in signal processing are often characterized by the availability of reliable statistical modeling with some missing instance-specific parameters. One conventional approach uses data to estimate these missing parameters and then infers based on the estimated model. Alternatively, data can also be leveraged to directly learn the inference mapping end-to-end. These approaches for combining partially-known statistical models and data in inference are related to the notions of generative and discriminative models used in the machine learning literature, typically considered in the context of classifiers. The goal of this lecture note is to introduce the concepts of generative and discriminative learning for inference with a partially-known statistical model. While machine learning systems often lack the interpretability of traditional signal processing methods, we focus on a simple setting where one can interpret and compare the approaches in a tractable manner that is accessible and relevant to signal processing readers. In particular, we exemplify the approaches for the task of Bayesian signal estimation in a jointly Gaussian setting with the mean-squared error (MSE) objective, i.e., a linear estimation setting.
Conditional effect estimation has great scientific and policy importance because interventions may impact subjects differently depending on their characteristics. Most research has focused on estimating the conditional average treatment effect (CATE). However, identification of the CATE requires all subjects have a non-zero probability of receiving treatment, or positivity, which may be unrealistic in practice. Instead, we propose conditional effects based on incremental propensity score interventions, which are stochastic interventions where the odds of treatment are multiplied by some factor. These effects do not require positivity for identification and can be better suited for modeling scenarios in which people cannot be forced into treatment. We develop a projection estimator and a flexible nonparametric estimator that can each estimate all the conditional effects we propose and derive model-agnostic error guarantees showing both estimators satisfy a form of double robustness. Further, we propose a summary of treatment effect heterogeneity and a test for any effect heterogeneity based on the variance of a conditional derivative effect and derive a nonparametric estimator that also satisfies a form of double robustness. Finally, we demonstrate our estimators by analyzing the effect of intensive care unit admission on mortality using a dataset from the (SPOT)light study.
We propose a rectangular rotational invariant estimator to recover a real matrix from noisy matrix observations coming from an arbitrary additive rotational invariant perturbation, in the large dimension limit. Using the Bayes-optimality of this estimator, we derive the asymptotic minimum mean squared error (MMSE). For the particular case of Gaussian noise, we find an explicit expression for the MMSE in terms of the limiting singular value distribution of the observation matrix. Moreover, we prove a formula linking the asymptotic mutual information and the limit of log-spherical integral of rectangular matrices. We also provide numerical checks for our results, which match our theoretical predictions and known Bayesian inference results.
We deal with the problem of optimal estimation of the linear functionals constructed from unobserved values of a continuous time stochastic process with periodically correlated increments based on past observations of this process. To solve the problem, we construct a corresponding to the process sequence of stochastic functions which forms an infinite dimensional vector stationary increment sequence. In the case of known spectral density of the stationary increment sequence, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal estimates of the functionals. Formulas determining the least favorable spectral densities and the minimax (robust) spectral characteristics of the optimal linear estimates of functionals are derived in the case where the sets of admissible spectral densities are given.
In this paper we study the type IV Knorr Held space time models. Such models typically apply intrinsic Markov random fields and constraints are imposed for identifiability. INLA is an efficient inference tool for such models where constraints are dealt with through a conditioning by kriging approach. When the number of spatial and/or temporal time points become large, it becomes computationally expensive to fit such models, partly due to the number of constraints involved. We propose a new approach, HyMiK, dividing constraints into two separate sets where one part is treated through a mixed effect approach while the other one is approached by the standard conditioning by kriging method, resulting in a more efficient procedure for dealing with constraints. The new approach is easy to apply based on existing implementations of INLA. We run the model on simulated data, on a real data set containing dengue fever cases in Brazil and another real data set of confirmed positive test cases of Covid-19 in the counties of Norway. For all cases we get very similar results when comparing the new approach with the tradition one while at the same time obtaining a significant increase in computational speed, varying on a factor from 3 to 23, depending on the sizes of the data sets.
Proximal causal inference is a recently proposed framework for evaluating the causal effect of a treatment on an outcome variable in the presence of unmeasured confounding (Miao et al., 2018; Tchetgen Tchetgen et al., 2020). For nonparametric point identification of causal effects, the framework leverages a pair of so-called treatment and outcome confounding proxy variables, in order to identify a bridge function that matches the dependence of potential outcomes or treatment variables on the hidden factors to corresponding functions of observed proxies. Unique identification of a causal effect via a bridge function crucially requires that proxies are sufficiently relevant for hidden factors, a requirement that has previously been formalized as a completeness condition. However, completeness is well-known not to be empirically testable, and although a bridge function may be well-defined in a given setting, lack of completeness, sometimes manifested by availability of a single type of proxy, may severely limit prospects for identification of a bridge function and thus a causal effect; therefore, potentially restricting the application of the proximal causal framework. In this paper, we propose partial identification methods that do not require completeness and obviate the need for identification of a bridge function. That is, we establish that proxies of unobserved confounders can be leveraged to obtain bounds on the causal effect of the treatment on the outcome even if available information does not suffice to identify either a bridge function or a corresponding causal effect of interest. We further establish analogous partial identification results in related settings where identification hinges upon hidden mediators for which proxies are available, however such proxies are not sufficiently rich for point identification of a bridge function or a corresponding causal effect of interest.
The advancement of computer vision and machine learning has made datasets a crucial element for further research and applications. However, the creation and development of robots with advanced recognition capabilities are hindered by the lack of appropriate datasets. Existing image or video processing datasets are unable to accurately depict observations from a moving robot, and they do not contain the kinematics information necessary for robotic tasks. Synthetic data, on the other hand, are cost-effective to create and offer greater flexibility for adapting to various applications. Hence, they are widely utilized in both research and industry. In this paper, we propose the dataset HabitatDyn, which contains both synthetic RGB videos, semantic labels, and depth information, as well as kinetics information. HabitatDyn was created from the perspective of a mobile robot with a moving camera, and contains 30 scenes featuring six different types of moving objects with varying velocities. To demonstrate the usability of our dataset, two existing algorithms are used for evaluation and an approach to estimate the distance between the object and camera is implemented based on these segmentation methods and evaluated through the dataset. With the availability of this dataset, we aspire to foster further advancements in the field of mobile robotics, leading to more capable and intelligent robots that can navigate and interact with their environments more effectively. The code is publicly available at //github.com/ignc-research/HabitatDyn.