亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conditional effect estimation has great scientific and policy importance because interventions may impact subjects differently depending on their characteristics. Most research has focused on estimating the conditional average treatment effect (CATE). However, identification of the CATE requires all subjects have a non-zero probability of receiving treatment, or positivity, which may be unrealistic in practice. Instead, we propose conditional effects based on incremental propensity score interventions, which are stochastic interventions where the odds of treatment are multiplied by some factor. These effects do not require positivity for identification and can be better suited for modeling scenarios in which people cannot be forced into treatment. We develop a projection estimator and a flexible nonparametric estimator that can each estimate all the conditional effects we propose and derive model-agnostic error guarantees showing both estimators satisfy a form of double robustness. Further, we propose a summary of treatment effect heterogeneity and a test for any effect heterogeneity based on the variance of a conditional derivative effect and derive a nonparametric estimator that also satisfies a form of double robustness. Finally, we demonstrate our estimators by analyzing the effect of intensive care unit admission on mortality using a dataset from the (SPOT)light study.

相關內容

The estimation of causal effects is a primary goal of behavioral, social, economic and biomedical sciences. Under the unconfoundedness condition, adjustment for confounders requires estimating the nuisance functions relating outcome and/or treatment to confounders. This paper considers a generalized optimization framework for efficient estimation of general treatment effects using feedforward artificial neural networks (ANNs) when the number of covariates is allowed to increase with the sample size. We estimate the nuisance function by ANNs, and develop a new approximation error bound for the ANNs approximators when the nuisance function belongs to a mixed Sobolev space. We show that the ANNs can alleviate the curse of dimensionality under this circumstance. We further establish the consistency and asymptotic normality of the proposed treatment effects estimators, and apply a weighted bootstrap procedure for conducting inference. The proposed methods are illustrated via simulation studies and a real data application.

Estimation of signal-to-noise ratios and residual variances in high-dimensional linear models has various important applications including, e.g. heritability estimation in bioinformatics. One commonly used estimator, usually referred to as REML, is based on the likelihood of the random effects model, in which both the regression coefficients and the noise variables are respectively assumed to be i.i.d Gaussian random variables. In this paper, we aim to establish the consistency and asymptotic distribution of the REML estimator for the SNR, when the actual coefficient vector is fixed, and the actual noise is heteroscedastic and correlated, at the cost of assuming the entries of the design matrix are independent and skew-free. The asymptotic variance can be also consistently estimated when the noise is heteroscedastic but uncorrelated. Extensive numerical simulations illustrate our theoretical findings and also suggest some assumptions imposed in our theoretical results are likely relaxable.

Rapidly increasing quality of AI-generated content makes it difficult to distinguish between human and AI-generated texts, which may lead to undesirable consequences for society. Therefore, it becomes increasingly important to study the properties of human texts that are invariant over text domains and various proficiency of human writers, can be easily calculated for any language, and can robustly separate natural and AI-generated texts regardless of the generation model and sampling method. In this work, we propose such an invariant of human texts, namely the intrinsic dimensionality of the manifold underlying the set of embeddings of a given text sample. We show that the average intrinsic dimensionality of fluent texts in natural language is hovering around the value $9$ for several alphabet-based languages and around $7$ for Chinese, while the average intrinsic dimensionality of AI-generated texts for each language is $\approx 1.5$ lower, with a clear statistical separation between human-generated and AI-generated distributions. This property allows us to build a score-based artificial text detector. The proposed detector's accuracy is stable over text domains, generator models, and human writer proficiency levels, outperforming SOTA detectors in model-agnostic and cross-domain scenarios by a significant margin.

We propose a new, computationally efficient, sparsity adaptive changepoint estimator for detecting changes in unknown subsets of a high-dimensional data sequence. Assuming the data sequence is Gaussian, we prove that the new method successfully estimates the number and locations of changepoints with a given error rate and under minimal conditions, for all sparsities of the changing subset. Moreover, our method has computational complexity linear up to logarithmic factors in both the length and number of time series, making it applicable to large data sets. Through extensive numerical studies we show that the new methodology is highly competitive in terms of both estimation accuracy and computational cost. The practical usefulness of the method is illustrated by analysing sensor data from a hydro power plant. An efficient R implementation is available.

Long-term outcomes of experimental evaluations are necessarily observed after long delays. We develop semiparametric methods for combining the short-term outcomes of experiments with observational measurements of short-term and long-term outcomes, in order to estimate long-term treatment effects. We characterize semiparametric efficiency bounds for various instances of this problem. These calculations facilitate the construction of several estimators. We analyze the finite-sample performance of these estimators with a simulation calibrated to data from an evaluation of the long-term effects of a poverty alleviation program.

When estimating treatment effects, the golden standard is to conduct a randomized experiment and then contrast outcomes associated with the treatment group and the control group. However, in many cases, randomized experiments are either conducted with a much smaller scale compared to the size of the target population or accompanied with certain ethical issues and thus hard to implement. Therefore, researchers usually rely on observational data to study causal connections. The downside is that the unconfoundedness assumption, the key to validate the use of observational data is hard to verify and almost always violated. Hence, any conclusion drawn from observational data should be further analyzed with great care. Given the richness of observational data and usefulness of experimental data, researchers hope to develop credible method to combine the strength of the two. In this paper, we consider a setting where the observational data contain the outcome of interest as well as a surrogate outcome while the experimental data contain only the surrogate outcome. We propose a simple estimator to estimate the average treatment effect of interest using both the observational data and the experimental data.

The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in this setting are now readily recognized, and partial remedies are well known. Much less understood is the impact of population interference in panel experiments where treatment is sequentially randomized in the population, and the outcomes are observed at each time step. This paper proposes a general framework for studying population interference in panel experiments and presents new finite population estimation and inference results. Our findings suggest that, under mild assumptions, the addition of a temporal dimension to an experiment alleviates some of the challenges of population interference for certain estimands. In contrast, we show that the presence of carryover effects -- that is, when past treatments may affect future outcomes -- exacerbates the problem. Revisiting the special case of standard experiments with population interference, we prove a central limit theorem under weaker conditions than previous results in the literature and highlight the trade-off between flexibility in the design and the interference structure.

This paper considers Bayesian inference for the partially linear model. Our approach exploits a parametrization of the regression function that is tailored toward estimating a low-dimensional parameter of interest. The key property of the parametrization is that it generates a Neyman orthogonal moment condition meaning that the low-dimensional parameter is less sensitive to the estimation of nuisance parameters. Our large sample analysis supports this claim. In particular, we derive sufficient conditions under which the posterior for the low-dimensional parameter contracts around the truth at the parametric rate and is asymptotically normal with a variance that coincides with the semiparametric efficiency bound. These conditions allow for a larger class of nuisance parameters relative to the original parametrization of the regression model. Overall, we conclude that a parametrization that embeds Neyman orthogonality can be a useful device for debiasing posterior distributions in semiparametric models.

We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards. In this work, we study the maximum entropy exploration problem of two different types. The first type is visitation entropy maximization previously considered by Hazan et al.(2019) in the discounted setting. For this type of exploration, we propose a game-theoretic algorithm that has $\widetilde{\mathcal{O}}(H^3S^2A/\varepsilon^2)$ sample complexity thus improving the $\varepsilon$-dependence upon existing results, where $S$ is a number of states, $A$ is a number of actions, $H$ is an episode length, and $\varepsilon$ is a desired accuracy. The second type of entropy we study is the trajectory entropy. This objective function is closely related to the entropy-regularized MDPs, and we propose a simple algorithm that has a sample complexity of order $\widetilde{\mathcal{O}}(\mathrm{poly}(S,A,H)/\varepsilon)$. Interestingly, it is the first theoretical result in RL literature that establishes the potential statistical advantage of regularized MDPs for exploration. Finally, we apply developed regularization techniques to reduce sample complexity of visitation entropy maximization to $\widetilde{\mathcal{O}}(H^2SA/\varepsilon^2)$, yielding a statistical separation between maximum entropy exploration and reward-free exploration.

Personalized treatment effect estimates are often of interest in high-stakes applications -- thus, before deploying a model estimating such effects in practice, one needs to be sure that the best candidate from the ever-growing machine learning toolbox for this task was chosen. Unfortunately, due to the absence of counterfactual information in practice, it is usually not possible to rely on standard validation metrics for doing so, leading to a well-known model selection dilemma in the treatment effect estimation literature. While some solutions have recently been investigated, systematic understanding of the strengths and weaknesses of different model selection criteria is still lacking. In this paper, instead of attempting to declare a global `winner', we therefore empirically investigate success- and failure modes of different selection criteria. We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them, and provide interesting insights into the relative (dis)advantages of different criteria alongside desiderata for the design of further illuminating empirical studies in this context.

北京阿比特科技有限公司