Recent works have proven that intricate cooperative behaviors can emerge in agents trained using meta reinforcement learning on open ended task distributions using self-play. While the results are impressive, we argue that self-play and other centralized training techniques do not accurately reflect how general collective exploration strategies emerge in the natural world: through decentralized training and over an open-ended distribution of tasks. In this work we therefore investigate the emergence of collective exploration strategies, where several agents meta-learn independent recurrent policies on an open ended distribution of tasks. To this end we introduce a novel environment with an open ended procedurally generated task space which dynamically combines multiple subtasks sampled from five diverse task types to form a vast distribution of task trees. We show that decentralized agents trained in our environment exhibit strong generalization abilities when confronted with novel objects at test time. Additionally, despite never being forced to cooperate during training the agents learn collective exploration strategies which allow them to solve novel tasks never encountered during training. We further find that the agents learned collective exploration strategies extend to an open ended task setting, allowing them to solve task trees of twice the depth compared to the ones seen during training. Our open source code as well as videos of the agents can be found on our companion website.
Recent progress in self-supervised representation learning has resulted in models that are capable of extracting image features that are not only effective at encoding image level, but also pixel-level, semantics. These features have been shown to be effective for dense visual semantic correspondence estimation, even outperforming fully-supervised methods. Nevertheless, current self-supervised approaches still fail in the presence of challenging image characteristics such as symmetries and repeated parts. To address these limitations, we propose a new approach for semantic correspondence estimation that supplements discriminative self-supervised features with 3D understanding via a weak geometric spherical prior. Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training. We propose a new evaluation metric that better accounts for repeated part and symmetry-induced mistakes. We present results on the challenging SPair-71k dataset, where we show that our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories, and also demonstrate that we can generalize to unseen classes on the AwA dataset.
While decentralized training is attractive in multi-agent reinforcement learning (MARL) for its excellent scalability and robustness, its inherent coordination challenges in collaborative tasks result in numerous interactions for agents to learn good policies. To alleviate this problem, action advising methods make experienced agents share their knowledge about what to do, while less experienced agents strictly follow the received advice. However, this method of sharing and utilizing knowledge may hinder the team's exploration of better states, as agents can be unduly influenced by suboptimal or even adverse advice, especially in the early stages of learning. Inspired by the fact that humans can learn not only from the success but also from the failure of others, this paper proposes a novel knowledge sharing framework called Cautiously-Optimistic kNowledge Sharing (CONS). CONS enables each agent to share both positive and negative knowledge and cautiously assimilate knowledge from others, thereby enhancing the efficiency of early-stage exploration and the agents' robustness to adverse advice. Moreover, considering the continuous improvement of policies, agents value negative knowledge more in the early stages of learning and shift their focus to positive knowledge in the later stages. Our framework can be easily integrated into existing Q-learning based methods without introducing additional training costs. We evaluate CONS in several challenging multi-agent tasks and find it excels in environments where optimal behavioral patterns are difficult to discover, surpassing the baselines in terms of convergence rate and final performance.
As an exemplary self-supervised approach for representation learning, time-series contrastive learning has exhibited remarkable advancements in contemporary research. While recent contrastive learning strategies have focused on how to construct appropriate positives and negatives, in this study, we conduct theoretical analysis and find they have overlooked the fundamental issues: false negatives and class imbalance inherent in the InfoNCE loss-based framework. Therefore, we introduce a straightforward modification grounded in the SimCLR framework, universally adaptable to models engaged in the instance discrimination task. By constructing instance graphs to facilitate interactive learning among instances, we emulate supervised contrastive learning via the multiple-instances discrimination task, mitigating the harmful impact of false negatives. Moreover, leveraging the graph structure and few-labeled data, we perform semi-supervised consistency classification and enhance the representative ability of minority classes. We compared our method with the most popular time-series contrastive learning methods on four real-world time-series datasets and demonstrated our significant advantages in overall performance.
While there has been significant progress in curriculum learning and continuous learning for training agents to generalize across a wide variety of environments in the context of single-agent reinforcement learning, it is unclear if these algorithms would still be valid in a multi-agent setting. In a competitive setting, a learning agent can be trained by making it compete with a curriculum of increasingly skilled opponents. However, a general intelligent agent should also be able to learn to act around other agents and cooperate with them to achieve common goals. When cooperating with other agents, the learning agent must (a) learn how to perform the task (or subtask), and (b) increase the overall team reward. In this paper, we aim to answer the question of what kind of cooperative teammate, and a curriculum of teammates should a learning agent be trained with to achieve these two objectives. Our results on the game Overcooked show that a pre-trained teammate who is less skilled is the best teammate for overall team reward but the worst for the learning of the agent. Moreover, somewhat surprisingly, a curriculum of teammates with decreasing skill levels performs better than other types of curricula.
Neural language models have become powerful tools for learning complex representations of entities in natural language processing tasks. However, their interpretability remains a significant challenge, particularly in domains like computational biology where trust in model predictions is crucial. In this work, we aim to enhance the interpretability of protein language models, specifically the state-of-the-art ESM model, by identifying and characterizing knowledge neurons - components that express understanding of key information. After fine-tuning the ESM model for the task of enzyme sequence classification, we compare two knowledge neuron selection methods that preserve a subset of neurons from the original model. The two methods, activation-based and integrated gradient-based selection, consistently outperform a random baseline. In particular, these methods show that there is a high density of knowledge neurons in the key vector prediction networks of self-attention modules. Given that key vectors specialize in understanding different features of input sequences, these knowledge neurons could capture knowledge of different enzyme sequence motifs. In the future, the types of knowledge captured by each neuron could be characterized.
Detecting human-object interactions (HOI) in a few-shot setting remains a challenge. Existing meta-learning methods struggle to extract representative features for classification due to the limited data, while existing few-shot HOI models rely on HOI text labels for classification. Moreover, some query images may display visual similarity to those outside their class, such as similar backgrounds between different HOI classes. This makes learning more challenging, especially with limited samples. Bongard-HOI (Jiang et al. 2022) epitomizes this HOI few-shot problem, making it the benchmark we focus on in this paper. In our proposed method, we introduce novel label-uncertain query augmentation techniques to enhance the diversity of the query inputs, aiming to distinguish the positive HOI class from the negative ones. As these augmented inputs may or may not have the same class label as the original inputs, their class label is unknown. Those belonging to a different class become hard samples due to their visual similarity to the original ones. Additionally, we introduce a novel pseudo-label generation technique that enables a mean teacher model to learn from the augmented label-uncertain inputs. We propose to augment the negative support set for the student model to enrich the semantic information, fostering diversity that challenges and enhances the student's learning. Experimental results demonstrate that our method sets a new state-of-the-art (SOTA) performance by achieving 68.74% accuracy on the Bongard-HOI benchmark, a significant improvement over the existing SOTA of 66.59%. In our evaluation on HICO-FS, a more general few-shot recognition dataset, our method achieves 73.27% accuracy, outperforming the previous SOTA of 71.20% in the 5-way 5-shot task.
Communication in multi-agent reinforcement learning (MARL) has been proven to effectively promote cooperation among agents recently. Since communication in real-world scenarios is vulnerable to noises and adversarial attacks, it is crucial to develop robust communicative MARL technique. However, existing research in this domain has predominantly focused on passive defense strategies, where agents receive all messages equally, making it hard to balance performance and robustness. We propose an active defense strategy, where agents automatically reduce the impact of potentially harmful messages on the final decision. There are two challenges to implement this strategy, that are defining unreliable messages and adjusting the unreliable messages' impact on the final decision properly. To address them, we design an Active Defense Multi-Agent Communication framework (ADMAC), which estimates the reliability of received messages and adjusts their impact on the final decision accordingly with the help of a decomposable decision structure. The superiority of ADMAC over existing methods is validated by experiments in three communication-critical tasks under four types of attacks.
There has been significant attention devoted to the effectiveness of various domains, such as semi-supervised learning, contrastive learning, and meta-learning, in enhancing the performance of methods for noisy label learning (NLL) tasks. However, most existing methods still depend on prior assumptions regarding clean samples amidst different sources of noise (\eg, a pre-defined drop rate or a small subset of clean samples). In this paper, we propose a simple yet powerful idea called \textbf{NPN}, which revolutionizes \textbf{N}oisy label learning by integrating \textbf{P}artial label learning (PLL) and \textbf{N}egative learning (NL). Toward this goal, we initially decompose the given label space adaptively into the candidate and complementary labels, thereby establishing the conditions for PLL and NL. We propose two adaptive data-driven paradigms of label disambiguation for PLL: hard disambiguation and soft disambiguation. Furthermore, we generate reliable complementary labels using all non-candidate labels for NL to enhance model robustness through indirect supervision. To maintain label reliability during the later stage of model training, we introduce a consistency regularization term that encourages agreement between the outputs of multiple augmentations. Experiments conducted on both synthetically corrupted and real-world noisy datasets demonstrate the superiority of NPN compared to other state-of-the-art (SOTA) methods. The source code has been made available at {\color{purple}{\url{//github.com/NUST-Machine-Intelligence-Laboratory/NPN}}}.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.