亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate a dynamic packet scheduling algorithm designed to enhance the eXtended Reality (XR) capacity of fifth-generation (5G)-Advanced networks with multiple cells, multiple users, and multiple services. The scheduler exploits the newly defined protocol data unit (PDU)-set information for XR traffic flows to enhance its quality-of-service awareness. To evaluate the performance of the proposed solution, advanced dynamic system-level simulations are conducted. The findings reveal that the proposed scheduler offers a notable improvement in increasing XR capacity up to 45%, while keeping the same enhanced mobile broadband (eMBB) cell throughput as compared to the well-known baseline schedulers.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In this paper, we present a Computer Vision (CV) based tracking and fusion algorithm, dedicated to a 3D printed gimbal system on drones operating in nature. The whole gimbal system can stabilize the camera orientation robustly in a challenging nature scenario by using skyline and ground plane as references. Our main contributions are the following: a) a light-weight Resnet-18 backbone network model was trained from scratch, and deployed onto the Jetson Nano platform to segment the image into binary parts (ground and sky); b) our geometry assumption from nature cues delivers the potential for robust visual tracking by using the skyline and ground plane as a reference; c) a spherical surface-based adaptive particle sampling, can fuse orientation from multiple sensor sources flexibly. The whole algorithm pipeline is tested on our customized gimbal module including Jetson and other hardware components. The experiments were performed on top of a building in the real landscape.

We propose a novel set of Poisson Cluster Process (PCP) models to detect Ultra-Diffuse Galaxies (UDGs), a class of extremely faint, enigmatic galaxies of substantial interest in modern astrophysics. We model the unobserved UDG locations as parent points in a PCP, and infer their positions based on the observed spatial point patterns of their old star cluster systems. Many UDGs have somewhere from a few to hundreds of these old star clusters, which we treat as offspring points in our models. We also present a new framework to construct a marked PCP model using the marks of star clusters. The marked PCP model may enhance the detection of UDGs and offers broad applicability to problems in other disciplines. To assess the overall model performance, we design an innovative assessment tool for spatial prediction problems where only point-referenced ground truth is available, overcoming the limitation of standard ROC analyses where spatial Boolean reference maps are required. We construct a bespoke blocked Gibbs adaptive spatial birth-death-move MCMC algorithm to infer the locations of UDGs using real data from a \textit{Hubble Space Telescope} imaging survey. Based on our performance assessment tool, our novel models significantly outperform existing approaches using the Log-Gaussian Cox Process. We also obtained preliminary evidence that the marked PCP model improves UDG detection performance compared to the model without marks. Furthermore, we find evidence of a potential new ``dark galaxy'' that was not detected by previous methods.

In this paper, we conducted a comparative evaluation of three RGB-D SLAM (Simultaneous Localization and Mapping) algorithms: RTAB-Map, ORB-SLAM3, and OpenVSLAM for SURENA-V humanoid robot localization and mapping. Our test involves the robot to follow a full circular pattern, with an Intel RealSense D435 RGB-D camera installed on its head. In assessing localization accuracy, ORB-SLAM3 outperformed the others with an ATE of 0.1073, followed by RTAB-Map at 0.1641 and OpenVSLAM at 0.1847. However, it should be noted that both ORB-SLAM3 and OpenVSLAM faced challenges in maintaining accurate odometry when the robot encountered a wall with limited feature points. Nevertheless, OpenVSLAM demonstrated the ability to detect loop closures and successfully relocalize itself within the map when the robot approached its initial location. The investigation also extended to mapping capabilities, where RTAB-Map excelled by offering diverse mapping outputs, including dense, OctoMap, and occupancy grid maps. In contrast, both ORB-SLAM3 and OpenVSLAM provided only sparse maps.

In this paper, we provide a novel enumeration algorithm for the set of all walks of a given length within a directed graph. Our algorithm has worst-case constant delay between outputting succinct representations of such walks, after a preprocessing step requiring linear time relative to the size of the graph. We apply these results to the problem of enumerating succinct representations of the strings of a given length from a prefix-closed regular language (languages accepted by a finite automaton which has final states only).

In this paper, we provide the first convergence guarantee for the factorization approach. Specifically, to avoid the scaling ambiguity and to facilitate theoretical analysis, we optimize over the so-called left-orthogonal TT format which enforces orthonormality among most of the factors. To ensure the orthonormal structure, we utilize the Riemannian gradient descent (RGD) for optimizing those factors over the Stiefel manifold. We first delve into the TT factorization problem and establish the local linear convergence of RGD. Notably, the rate of convergence only experiences a linear decline as the tensor order increases. We then study the sensing problem that aims to recover a TT format tensor from linear measurements. Assuming the sensing operator satisfies the restricted isometry property (RIP), we show that with a proper initialization, which could be obtained through spectral initialization, RGD also converges to the ground-truth tensor at a linear rate. Furthermore, we expand our analysis to encompass scenarios involving Gaussian noise in the measurements. We prove that RGD can reliably recover the ground truth at a linear rate, with the recovery error exhibiting only polynomial growth in relation to the tensor order. We conduct various experiments to validate our theoretical findings.

In this paper, we propose an information geometry approach (IGA) for signal detection (SD) in ultra-massive multiple-input multiple-output (MIMO) systems. We formulate the signal detection as obtaining the marginals of the a posteriori probability distribution of the transmitted symbol vector. Then, a maximization of the a posteriori marginals (MPM) for signal detection can be performed. With the information geometry theory, we calculate the approximations of the a posteriori marginals. It is formulated as an iterative m-projection process between submanifolds with different constraints. We then apply the central-limit-theorem (CLT) to simplify the calculation of the m-projection since the direct calculation of the m-projection is of exponential-complexity. With the CLT, we obtain an approximate solution of the m-projection, which is asymptotically accurate. Simulation results demonstrate that the proposed IGA-SD emerges as a promising and efficient method to implement the signal detector in ultra-massive MIMO systems.

In Part II of this two-part paper, we prove the convergence of the simplified information geometry approach (SIGA) proposed in Part I. For a general Bayesian inference problem, we first show that the iteration of the common second-order natural parameter (SONP) is separated from that of the common first-order natural parameter (FONP). Hence, the convergence of the common SONP can be checked independently. We show that with the initialization satisfying a specific but large range, the common SONP is convergent regardless of the value of the damping factor. For the common FONP, we establish a sufficient condition of its convergence and prove that the convergence of the common FONP relies on the spectral radius of a particular matrix related to the damping factor. We give the range of the damping factor that guarantees the convergence in the worst case. Further, we determine the range of the damping factor for massive MIMO-OFDM channel estimation by using the specific properties of the measurement matrices. Simulation results are provided to confirm the theoretical results.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司