This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we advocate a novel protocol for the uplink communication in the IRS-assisted massive MIMO systems. Under this protocol, the IRS reflection coefficients are optimized based on the channel covariance matrices, which are generally fixed for many coherence blocks, to boost the long-term performance. Then, given the IRS reflecting coefficients, the BS beamforming vectors are designed in each coherence block based on the effective channel of each user, which is the superposition of its direct and reflected user-IRS-BS channels, to improve the instantaneous performance. Since merely the user effective channels are estimated in each coherence block, the training overhead of this protocol is the same as that in the legacy wireless systems without IRSs. Moreover, in the asymptotic regime that the numbers of IRS elements and BS antennas both go to infinity with a fixed ratio, we manage to first characterize the minimum mean-squared error (MMSE) estimators of the user effective channels and then quantify the closed-form user achievable rates as functions of channel covariance matrices with channel training overhead and estimation error taken into account. Interestingly, it is shown that the properties of channel hardening and favorable propagation still hold for the user effective channels, and satisfactory user rates are thus achievable even if simple BS beamforming solutions, e.g., maximal-ratio combining, are employed. Finally, thanks to the rate characterization, we design a low-complexity algorithm to optimize the IRS reflection coefficients based on channel covariance matrices.
Many papers in the field of integer linear programming (ILP, for short) are devoted to problems of the type $\max\{c^\top x \colon A x = b,\, x \in \mathbb{Z}^n_{\geq 0}\}$, where all the entries of $A,b,c$ are integer, parameterized by the number of rows of $A$ and $\|A\|_{\max}$. This class of problems is known under the name of ILP problems in the standard form, adding the word "bounded" if $x \leq u$, for some integer vector $u$. Recently, many new sparsity, proximity, and complexity results were obtained for bounded and unbounded ILP problems in the standard form. In this paper, we consider ILP problems in the canonical form $$\max\{c^\top x \colon b_l \leq A x \leq b_r,\, x \in \mathbb{Z}^n\},$$ where $b_l$ and $b_r$ are integer vectors. We assume that the integer matrix $A$ has the rank $n$, $(n + m)$ rows, $n$ columns, and parameterize the problem by $m$ and $\Delta(A)$, where $\Delta(A)$ is the maximum of $n \times n$ sub-determinants of $A$, taken in the absolute value. We show that any ILP problem in the standard form can be polynomially reduced to some ILP problem in the canonical form, preserving $m$ and $\Delta(A)$, but the reverse reduction is not always possible. More precisely, we define the class of generalized ILP problems in the standard form, which includes an additional group constraint, and prove the equivalence to ILP problems in the canonical form. We generalize known sparsity, proximity, and complexity bounds for ILP problems in the canonical form. Additionally, sometimes, we strengthen previously known results for ILP problems in the canonical form, and, sometimes, we give shorter proofs. Finally, we consider the special cases of $m \in \{0,1\}$. By this way, we give specialised sparsity, proximity, and complexity bounds for the problems on simplices, Knapsack problems and Subset-Sum problems.
We consider the problem of entanglement-assisted one-shot classical communication. In the zero-error regime, entanglement can increase the one-shot zero-error capacity of a family of classical channels following the strategy of Cubitt et al., Phys. Rev. Lett. 104, 230503 (2010). This strategy uses the Kochen-Specker theorem which is applicable only to projective measurements. As such, in the regime of noisy states and/or measurements, this strategy cannot increase the capacity. To accommodate generically noisy situations, we examine the one-shot success probability of sending a fixed number of classical messages. We show that preparation contextuality powers the quantum advantage in this task, increasing the one-shot success probability beyond its classical maximum. Our treatment extends beyond Cubitt et al. and includes, for example, the experimentally implemented protocol of Prevedel et al., Phys. Rev. Lett. 106, 110505 (2011). We then show a mapping between this communication task and a corresponding nonlocal game. This mapping generalizes the connection with pseudotelepathy games previously noted in the zero-error case. Finally, after motivating a constraint we term context-independent guessing, we show that contextuality witnessed by noise-robust noncontextuality inequalities obtained in R. Kunjwal, Quantum 4, 219 (2020), is sufficient for enhancing the one-shot success probability. This provides an operational meaning to these inequalities and the associated hypergraph invariant, the weighted max-predictability, introduced in R. Kunjwal, Quantum 3, 184 (2019). Our results show that the task of entanglement-assisted one-shot classical communication provides a fertile ground to study the interplay of the Kochen-Specker theorem, Spekkens contextuality, and Bell nonlocality.
Several recent works in online optimization and game dynamics have established strong negative complexity results including the formal emergence of instability and chaos even in small such settings, e.g., $2\times 2$ games. These results motivate the following question: Which methodological tools can guarantee the regularity of such dynamics and how can we apply them in standard settings of interest such as discrete-time first-order optimization dynamics? We show how proving the existence of invariant functions, i.e., constant of motions, is a fundamental contribution in this direction and establish a plethora of such positive results (e.g. gradient descent, multiplicative weights update, alternating gradient descent and manifold gradient descent) both in optimization as well as in game settings. At a technical level, for some conservation laws we provide an explicit and concise closed form, whereas for other ones we present non-constructive proofs using tools from dynamical systems.
In this paper, a general nonlinear 1st-order consensus-based solution for distributed constrained convex optimization is considered for applications in network resource allocation. The proposed continuous-time solution is used to optimize continuously-differentiable strictly convex cost functions over weakly-connected undirected multi-agent networks. The solution is anytime feasible and models various nonlinearities to account for imperfections and constraints on the (physical model of) agents in terms of their limited actuation capabilities, e.g., quantization and saturation constraints among others. Moreover, different applications impose specific nonlinearities to the model, e.g., convergence in fixed/finite-time, robustness to uncertainties, and noise-tolerant dynamics. Our proposed distributed resource allocation protocol generalizes such nonlinear models. Putting convex set analysis together with the Lyapunov theorem, we provide a general technique to prove convergence (i) regardless of the particular type of nonlinearity (ii) with weak network-connectivity requirement (i.e., uniform-connectivity). We simulate the performance of the protocol in continuous-time coordination of generators, known as the economic dispatch problem (EDP).
In this letter, we consider an intelligent reflecting surface (IRS)-aided wireless communication system, where an active or passive IRS is employed to assist the communication between an access point and a user. First, we consider the downlink/uplink communication separately and optimize the IRS placement for rate maximization with an active or passive IRS. We show that the active IRS should be deployed closer to the receiver with the IRS's decreasing amplification power; while in contrast, the passive IRS should be deployed near either the transmitter or receiver. Moreover, with optimized IRS placement, the passive IRS is shown to outperform its active counterpart when the number of reflecting elements is sufficiently large and/or the active-IRS amplification power is too small. Next, we optimize the IRS placement for both active and passive IRSs to maximize the weighted sum-rate of uplink and downlink communications. We show that in this case, the passive IRS is more likely to achieve superior rate performance. This is because the optimal active-IRS placement needs to balance the rate performance in the uplink and downlink, while deploying the passive IRS near the transmitter or receiver is optimal regardless of the uplink or downlink.
The knowledge of channel covariance matrices is of paramount importance to the estimation of instantaneous channels and the design of beamforming vectors in multi-antenna systems. In practice, an abrupt change in channel covariance matrices may occur due to the change in the environment and the user location. Although several works have proposed efficient algorithms to estimate the channel covariance matrices after any change occurs, how to detect such a change accurately and quickly is still an open problem in the literature. In this paper, we focus on channel covariance change detection between a multi-antenna base station (BS) and a single-antenna user equipment (UE). To provide theoretical performance limit, we first propose a genie-aided change detector based on the log-likelihood ratio (LLR) test assuming the channel covariance matrix after change is known, and characterize the corresponding missed detection and false alarm probabilities. Then, this paper considers the practical case where the channel covariance matrix after change is unknown. The maximum likelihood (ML) estimation technique is used to predict the covariance matrix based on the received pilot signals over a certain number of coherence blocks, building upon which the LLR-based change detector is employed. Numerical results show that our proposed scheme can detect the change with low error probability even when the number of channel samples is small such that the estimation of the covariance matrix is not that accurate. This result verifies the possibility to detect the channel covariance change both accurately and quickly in practice.
This paper proposes networked dynamics to solve resource allocation problems over time-varying multi-agent networks. The state of each agent represents the amount of used resources (or produced utilities) while the total amount of resources is fixed. The idea is to optimally allocate the resources among the group of agents by minimizing the overall cost function subject to fixed sum of resources. Each agents' information is restricted to its own state and cost function and those of its immediate in-neighbors. This is motivated by distributed applications such as mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control. This work provides a fast convergent solution (in comparison with linear dynamics) while considering relaxed network connectivity with quantized communication links. The proposed dynamics reaches optimal solution over switching (possibly disconnected) undirected networks as far as their union over some bounded non-overlapping time-intervals has a spanning-tree. We prove feasibility of the solution, uniqueness of the optimal state, and convergence to the optimal value under the proposed dynamics, where the analysis is applicable to similar 1st-order allocation dynamics with strongly sign-preserving nonlinearities, such as actuator saturation.
Reconfigurable intelligent surfaces (RISs) have attracted great attention as a potential beyond 5G technology. These surfaces consist of many passive elements of metamaterials whose impedance can be controllable to change the phase, amplitude, or other characteristics of wireless signals impinging on them. Channel estimation is a critical task when it comes to the control of a large RIS when having a channel with a large number of multipath components. In this paper, we propose a novel channel estimation scheme that exploits spatial correlation characteristics at both the massive multiple-input multiple-output (MIMO) base station and the planar RISs, and other statistical characteristics of multi-specular fading in a mobile environment. Moreover, a novel heuristic for phase-shift selection at the RISs is developed, inspired by signal processing methods that are effective in conventional massive MIMO. Simulation results demonstrate that the proposed uplink RIS-aided framework improves the spectral efficiency of the cell-edge mobile users substantially in comparison to a conventional single-cell massive MIMO system.
This paper presents LuMaMi28, a real-time 28 GHz massive multiple-input multiple-output (MIMO) testbed. In this testbed, the base station has 16 transceiver chains with a fully-digital beamforming architecture (with different pre-coding algorithms) and simultaneously supports multiple user equipments (UEs) with spatial multiplexing. The UEs are equipped with a beam-switchable antenna array for real-time antenna selection where the one with the highest channel magnitude, out of four pre-defined beams, is selected. For the beam-switchable antenna array, we consider two kinds of UE antennas, with different beam-width and different peak-gain. Based on this testbed, we provide measurement results for millimeter-wave (mmWave) massive MIMO performance in different real-life scenarios with static and mobile UEs. We explore the potential benefit of the mmWave massive MIMO systems with antenna selection based on measured channel data, and discuss the performance results through real-time measurements.
Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of these factors. We find that suboptimal inference is often due to amortizing inference rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.