In this letter, we consider an intelligent reflecting surface (IRS)-aided wireless communication system, where an active or passive IRS is employed to assist the communication between an access point and a user. First, we consider the downlink/uplink communication separately and optimize the IRS placement for rate maximization with an active or passive IRS. We show that the active IRS should be deployed closer to the receiver with the IRS's decreasing amplification power; while in contrast, the passive IRS should be deployed near either the transmitter or receiver. Moreover, with optimized IRS placement, the passive IRS is shown to outperform its active counterpart when the number of reflecting elements is sufficiently large and/or the active-IRS amplification power is too small. Next, we optimize the IRS placement for both active and passive IRSs to maximize the weighted sum-rate of uplink and downlink communications. We show that in this case, the passive IRS is more likely to achieve superior rate performance. This is because the optimal active-IRS placement needs to balance the rate performance in the uplink and downlink, while deploying the passive IRS near the transmitter or receiver is optimal regardless of the uplink or downlink.
In this paper, we apply the self-attention from the state-of-the-art Transformer in Attention Is All You Need for the first time to a data-driven operator learning problem related to partial differential equations. An effort is put together to explain the heuristics of, and to improve the efficacy of the attention mechanism. By employing the operator approximation theory in Hilbert spaces, it is demonstrated for the first time that the softmax normalization in the scaled dot-product attention is sufficient but not necessary. Without softmax, the approximation capacity of a linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin projection layer-wise, and the estimate is independent with respect to the sequence length. A new layer normalization scheme mimicking the Petrov-Galerkin projection is proposed to allow a scaling to propagate through attention layers, which helps the model achieve remarkable accuracy in operator learning tasks with unnormalized data. Finally, we present three operator learning experiments, including the viscid Burgers' equation, an interface Darcy flow, and an inverse interface coefficient identification problem. The newly proposed simple attention-based operator learner, Galerkin Transformer, shows significant improvements in both training cost and evaluation accuracy over its softmax-normalized counterparts.
Different from conventional wired line connections, industrial control through wireless transmission is widely regarded as a promising solution due to its reduced cost, increased long-term reliability, and enhanced reliability. However, mission-critical applications impose stringent quality of service (QoS) requirements that entail ultra-reliability low-latency communications (URLLC). The primary feature of URLLC is that the blocklength of channel codes is short, and the conventional Shannon's Capacity is not applicable. In this paper, we consider the URLLC in a factory automation (FA) scenario. Due to densely deployed equipment in FA, wireless signal are easily blocked by the obstacles. To address this issue, we propose to deploy intelligent reflecting surface (IRS) to create an alternative transmission link, which can enhance the transmission reliability. In this paper, we focus on the performance analysis for IRS-aided URLLC-enabled communications in a FA scenario. Both the average data rate (ADR) and the average decoding error probability (ADEP) are derived under finite channel blocklength for seven cases: 1) Rayleigh fading channel; 2) With direct channel link; 3) Nakagami-m fading channel; 4) Imperfect phase alignment; 5) Multiple-IRS case; 6) Rician fading channel; 7) Correlated channels. Extensive numerical results are provided to verify the accuracy of our derived results.
In this paper, we study the performance of wideband terahertz (THz) communications assisted by an intelligent reflecting surface (IRS). Specifically, we first introduce a generalized channel model that is suitable for electrically large THz IRSs operating in the near-field. Unlike prior works, our channel model takes into account the spherical wavefront of the emitted electromagnetic waves and the spatial-wideband effect. We next show that conventional frequency-flat beamfocusing significantly reduces the power gain due to beam squint, and hence is highly suboptimal. More importantly, we analytically characterize this reduction when the spacing between adjacent reflecting elements is negligible, i.e., holographic reflecting surfaces. Numerical results corroborate our analysis and provide important insights into the design of future IRS-aided THz systems.
The prospects of using a reconfigurable intelligent surface (RIS) to aid wireless communication systems have recently received much attention. Among the different use cases, the most popular one is where each element of the RIS scatters the incoming signal with a controllable phase-shift, without increasing its power. In prior literature, this setup has been analyzed by neglecting the electromagnetic interference, consisting of the inevitable incoming waves from external sources. In this letter, we provide a physically meaningful model for the electromagnetic interference that can be used as a baseline when evaluating RIS-aided communications. The model is used to show that electromagnetic interference has a non-negligible impact on communication performance, especially when the size of the RIS grows large. When the direct link is present (though with a relatively weak gain), the RIS can even reduce the communication performance. Importantly, it turns out that the SNR grows quadratically with the number of RIS elements only when the spatial correlation matrix of the electromagnetic interference is asymptotically orthogonal to that of the channel vector towards the intended receiver. Otherwise, the SNR only increases linearly.
Unmanned aerial vehicles (UAVs) are gaining immense attention due to their potential to revolutionize various businesses and industries. However, the adoption of UAV-assisted applications will strongly rely on the provision of reliable systems that allow managing UAV operations at high levels of safety and security. Recently, the concept of UAV traffic management (UTM) has been introduced to support safe, efficient, and fair access to low-altitude airspace for commercial UAVs. A UTM system identifies multiple cooperating parties with different roles and levels of authority to provide real-time services to airspace users. However, current UTM systems are centralized and lack a clear definition of protocols that govern a secure interaction between authorities, service providers, and end-users. The lack of such protocols renders the UTM system unscalable and prone to various cyber attacks. Another limitation of the currently proposed UTM architecture is the absence of an efficient mechanism to enforce airspace rules and regulations. To address this issue, we propose a decentralized UTM protocol that controls access to airspace while ensuring high levels of integrity, availability, and confidentiality of airspace operations. To achieve this, we exploit key features of the blockchain and smart contract technologies. In addition, we employ a mobile crowdsensing (MCS) mechanism to seamlessly enforce airspace rules and regulations that govern the UAV operations. The solution is implemented on top of the Etheruem platform and verified using four different smart contract verification tools. We also provided a security and cost analysis of our solution. For reproducibility, we made our implementation publicly available on Github.
Contention-based wireless channel access methods like CSMA and ALOHA paved the way for the rise of the Internet of Things in industrial applications (IIoT). However, to cope with increasing demands for reliability and throughput, several mostly TDMA-based protocols like IEEE 802.15.4 and its extensions were proposed. Nonetheless, many of these IIoT-protocols still require contention-based communication, e.g., for slot allocation and broadcast transmission. In many cases, subtle but hidden patterns characterize this secondary traffic. Present contention-based protocols are unaware of these hidden patterns and can therefore not exploit this information. Especially in dense networks, they often do not provide sufficient reliability for primary traffic, e.g., they are unable to allocate transmission slots in time. In this paper, we propose QMA, a contention-based multiple access scheme based on Q-learning, which dynamically adapts transmission times to avoid collisions by learning patterns in the contention-based traffic. QMA is designed to be resource-efficient and targets small embedded devices. We show that QMA solves the hidden node problem without the additional overhead of RTS / CTS messages and verify the behaviour of QMA in the FIT IoT-LAB testbed. Finally, QMA's scalability is studied by simulation, where it is used for GTS allocation in IEEE 802.15.4 DSME. Results show that QMA considerably increases reliability and throughput in comparison to CSMA/CA, especially in networks with a high load.
In this paper, we investigate the problem of pilot optimization and channel estimation of two-way relaying network (TWRN) aided by an intelligent reflecting surface (IRS) with finite discrete phase shifters. In a TWRN, there exists a challenging problem that the two cascading channels from source-to-IRS-to-Relay and destination-to-IRS-to-relay interfere with each other. Via designing the initial phase shifts of IRS and pilot pattern, the two cascading channels are separated by using simple arithmetic operations like addition and subtraction. Then, the least-squares estimator is adopted to estimate the two cascading channels and two direct channels from source to relay and destination to relay. The corresponding mean square errors (MSE) of channel estimators are derived. By minimizing MSE, the optimal phase shift matrix of IRS is proved. Then, two special matrices Hadamard and discrete Fourier transform (DFT) matrix is shown to be two optimal training matrices for IRS. Furthermore, the IRS with discrete finite phase shifters is taken into account. Using theoretical derivation and numerical simulations, we find that 3-4 bits phase shifters are sufficient for IRS to achieve a negligible MSE performance loss. More importantly, the Hadamard matrix requires only one-bit phase shifters to achieve the optimal MSE performance while the DFT matrix requires at least three or four bits to achieve the same performance. Thus, the Hadamard matrix is a perfect choice for channel estimation using low-resolution phase-shifting IRS.
In this letter, we consider an intelligent reflecting surface (IRS)-aided wireless relaying system, where a decode-and-forward relay (R) is employed to forward data from a source (S) to a destination (D), aided by M passive reflecting elements. We consider two practical IRS deployment strategies, namely, single-IRS deployment where all reflecting elements are mounted on one single IRS that is deployed near S, R, or D, and multi-IRS deployment where the reflecting elements are allocated over three separate IRSs which are deployed near S, R, and D, respectively. Under the line-of-sight (LoS) channel model, we characterize the capacity scaling orders with respect to an increasing M for the IRS-aided relay system with different IRS deployment strategies. For single-IRS deployment, we show that deploying the IRS near R achieves the highest capacity as compared to that near S or D. While for multi-IRS deployment, we propose a practical cooperative IRS passive beamforming design which is analytically shown to achieve a larger capacity scaling order than the single-IRS deployment (i.e., near R or S/D) when M is sufficiently large. Numerical examples are provided, which validate our theoretical results.
The smart city is an emerging notion that is leveraging the Internet of Things (IoT) technique to achieve more comfortable, smart and controllable cities. The communications crossing domains between smart cities is indispensable to enhance collaborations. However, crossing-domain communications are more vulnerable since there are in different domains. Moreover, there are huge different devices with different computation capabilities, from sensors to the cloud servers. In this paper, we propose a lightweight two-layer blockchain mechanism for reliable crossing-domain communication in smart cities. Our mechanism provides a reliable communication mechanism for data sharing and communication between smart cities. We defined a two-layer blockchain structure for the communications inner and between smart cities to achieve reliable communications. We present a new block structure for the lightweight IoT devices. Moreover, we present a reputation-based multi-weight consensus protocol in order to achieve efficient communication while resistant to the nodes collusion attack for the proposed blockchain system. We also conduct a secure analysis to demonstrate the security of the proposed scheme. Finally, performance evaluation shows that our scheme is efficient and practical.
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.