亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the medical domain, several disease treatment procedures have been documented properly as a set of instructions known as Clinical Practice Guidelines (CPGs). CPGs have been developed over the years on the basis of past treatments, and are updated frequently. A doctor treating a particular patient can use these CPGs to know how past patients with similar conditions were treated successfully and can find the recommended treatment procedure. In this paper, we present a Decision Knowledge Graph (DKG) representation to store CPGs and to perform question-answering on CPGs. CPGs are very complex and no existing representation is suitable to perform question-answering and searching tasks on CPGs. As a result, doctors and practitioners have to manually wade through the guidelines, which is inefficient. Representation of CPGs is challenging mainly due to frequent updates on CPGs and decision-based structure. Our proposed DKG has a decision dimension added to a Knowledge Graph (KG) structure, purported to take care of decision based behavior of CPGs. Using this DKG has shown 40\% increase in accuracy compared to fine-tuned BioBert model in performing question-answering on CPGs. To the best of our knowledge, ours is the first attempt at creating DKGs and using them for representing CPGs.

相關內容

通過學習、實踐(jian)或(huo)探(tan)索所獲得的認識、判斷或(huo)技能。

Thresholds in treatment assignments can produce discontinuities in outcomes, revealing causal insights. In many contexts, like geographic settings, these thresholds are unknown and multivariate. We propose a non-parametric method to estimate the resulting discontinuities by segmenting the regression surface into smooth and discontinuous parts. This estimator uses a convex relaxation of the Mumford-Shah functional, for which we establish identification and convergence. Using our method, we estimate that an internet shutdown in India resulted in a reduction of economic activity by over 50%, greatly surpassing previous estimates and shedding new light on the true cost of such shutdowns for digital economies globally.

This study conducts a thorough examination of the research stream focusing on AI risks in healthcare, aiming to explore the distinct genres within this domain. A selection criterion was employed to carefully analyze 39 articles to identify three primary genres of AI risks prevalent in healthcare: clinical data risks, technical risks, and socio-ethical risks. Selection criteria was based on journal ranking and impact factor. The research seeks to provide a valuable resource for future healthcare researchers, furnishing them with a comprehensive understanding of the complex challenges posed by AI implementation in healthcare settings. By categorizing and elucidating these genres, the study aims to facilitate the development of empirical qualitative and quantitative research, fostering evidence-based approaches to address AI-related risks in healthcare effectively. This endeavor contributes to building a robust knowledge base that can inform the formulation of risk mitigation strategies, ensuring safe and efficient integration of AI technologies in healthcare practices. Thus, it is important to study AI risks in healthcare to build better and efficient AI systems and mitigate risks.

In the domain of Natural Language Processing (NLP), Named Entity Recognition (NER) stands out as a pivotal mechanism for extracting structured insights from unstructured text. This manuscript offers an exhaustive exploration into the evolving landscape of NER methodologies, blending foundational principles with contemporary AI advancements. Beginning with the rudimentary concepts of NER, the study spans a spectrum of techniques from traditional rule-based strategies to the contemporary marvels of transformer architectures, particularly highlighting integrations such as BERT with LSTM and CNN. The narrative accentuates domain-specific NER models, tailored for intricate areas like finance, legal, and healthcare, emphasizing their specialized adaptability. Additionally, the research delves into cutting-edge paradigms including reinforcement learning, innovative constructs like E-NER, and the interplay of Optical Character Recognition (OCR) in augmenting NER capabilities. Grounding its insights in practical realms, the paper sheds light on the indispensable role of NER in sectors like finance and biomedicine, addressing the unique challenges they present. The conclusion outlines open challenges and avenues, marking this work as a comprehensive guide for those delving into NER research and applications.

Despite the recent advancements in speech recognition, there are still difficulties in accurately transcribing conversational and emotional speech in noisy and reverberant acoustic environments. This poses a particular challenge in the search and rescue (SAR) domain, where transcribing conversations among rescue team members is crucial to support real-time decision-making. The scarcity of speech data and associated background noise in SAR scenarios make it difficult to deploy robust speech recognition systems. To address this issue, we have created and made publicly available a German speech dataset called RescueSpeech. This dataset includes real speech recordings from simulated rescue exercises. Additionally, we have released competitive training recipes and pre-trained models. Our study highlights that the performance attained by state-of-the-art methods in this challenging scenario is still far from reaching an acceptable level.

The representations of neural networks are often compared to those of biological systems by performing regression between the neural network responses and those measured from biological systems. Many different state-of-the-art deep neural networks yield similar neural predictions, but it remains unclear how to differentiate among models that perform equally well at predicting neural responses. To gain insight into this, we use a recent theoretical framework that relates the generalization error from regression to the spectral bias of the model activations and the alignment of the neural responses onto the learnable subspace of the model. We extend this theory to the case of regression between model activations and neural responses, and define geometrical properties describing the error embedding geometry. We test a large number of deep neural networks that predict visual cortical activity and show that there are multiple types of geometries that result in low neural prediction error as measured via regression. The work demonstrates that carefully decomposing representational metrics can provide interpretability of how models are capturing neural activity and points the way towards improved models of neural activity.

Maintaining factual consistency is a critical issue in abstractive text summarisation, however, it cannot be assessed by traditional automatic metrics used for evaluating text summarisation, such as ROUGE scoring. Recent efforts have been devoted to developing improved metrics for measuring factual consistency using pre-trained language models, but these metrics have restrictive token limits, and are therefore not suitable for evaluating long document text summarisation. Moreover, there is limited research evaluating whether existing automatic evaluation metrics are fit for purpose when applied to long document data sets. In this work, we evaluate the efficacy of automatic metrics at assessing factual consistency in long document text summarisation and propose a new evaluation framework LongDocFACTScore. This framework allows metrics to be extended to any length document. This framework outperforms existing state-of-the-art metrics in its ability to correlate with human measures of factuality when used to evaluate long document summarisation data sets. Furthermore, we show LongDocFACTScore has performance comparable to state-of-the-art metrics when evaluated against human measures of factual consistency on short document data sets. We make our code and annotated data publicly available: //github.com/jbshp/LongDocFACTScore.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司