亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hesitant fuzzy linguistic preference relation (HFLPR) is of interest because it provides an efficient way for opinion expression under uncertainty. For enhancing the theory of decision making with HFLPR, the paper introduces an algorithm for group decision making with HFLPRs based on the acceptable consistency and consensus measurements, which involves (1) defining a hesitant fuzzy linguistic geometric consistency index (HFLGCI) and proposing a procedure for consistency checking and inconsistency improving for HFLPR; (2) measuring the group consensus based on the similarity between the original individual HFLPRs and the overall perfect HFLPR, then establishing a procedure for consensus ensuring including the determination of decision-makers weights. The convergence and monotonicity of the proposed two procedures have been proved. Some experiments are furtherly performed to investigate the critical values of the defined HFLGCI, and comparative analyses are conducted to show the effectiveness of the proposed algorithm. A case concerning the performance evaluation of venture capital guiding funds is given to illustrate the availability of the proposed algorithm. As an application of our work, an online decision-making portal is finally provided for decision-makers to utilize the proposed algorithms to solve decision-making problems.

相關內容

Reactive systems \`a la Leifer and Milner, an abstract categorical framework for rewriting, provide a suitable framework for deriving bisimulation congruences. This is done by synthesizing interactions with the environment in order to obtain a compositional semantics. We enrich the notion of reactive systems by conditions on two levels: first, as in earlier work, we consider rules enriched with application conditions and second, we investigate the notion of conditional bisimilarity. Conditional bisimilarity allows us to say that two system states are bisimilar provided that the environment satisfies a given condition. We present several equivalent definitions of conditional bisimilarity, including one that is useful for concrete proofs and that employs an up-to-context technique, and we compare with related behavioural equivalences. We consider examples based on DPO graph rewriting, an instantiation of reactive systems.

We present an AI-assisted search tool, the "Design Concept Exploration Graph" ("D-Graph"). It assists automotive designers in creating an original design-concept phrase, that is, a combination of two adjectives that conveys product aesthetics. D-Graph retrieves adjectives from a ConceptNet knowledge graph as nodes and visualizes them in a dynamically scalable 3D graph as users explore words. The retrieval algorithm helps in finding unique words by ruling out overused words on the basis of word frequency from a large text corpus and words that are too similar between the two in a combination using the cosine similarity from ConceptNet Numberbatch word embeddings. Our experiment with participants in the automotive design field that used both the proposed D-Graph and a baseline tool for design-concept-phrase creation tasks suggested a positive difference in participants' self-evaluation on the phrases they created, though not significant. Experts' evaluations on the phrases did not show significant differences. Negative correlations between the cosine similarity of the two words in a design-concept phrase and the experts' evaluation were significant. Our qualitative analysis suggested the directions for further development of the tool that should help users in adhering to the strategy of creating compound phrases supported by computational linguistic principles.

AI and humans bring complementary skills to group deliberations. Modeling this group decision making is especially challenging when the deliberations include an element of risk and an exploration-exploitation process of appraising the capabilities of the human and AI agents. To investigate this question, we presented a sequence of intellective issues to a set of human groups aided by imperfect AI agents. A group's goal was to appraise the relative expertise of the group's members and its available AI agents, evaluate the risks associated with different actions, and maximize the overall reward by reaching consensus. We propose and empirically validate models of human-AI team decision making under such uncertain circumstances, and show the value of socio-cognitive constructs of prospect theory, influence dynamics, and Bayesian learning in predicting the behavior of human-AI groups.

One of the fundamental assumptions in stochastic control of continuous time processes is that the dynamics of the underlying (diffusion) process is known. This is, however, usually obviously not fulfilled in practice. On the other hand, over the last decades, a rich theory for nonparametric estimation of the drift (and volatility) for continuous time processes has been developed. The aim of this paper is bringing together techniques from stochastic control with methods from statistics for stochastic processes to find a way to both learn the dynamics of the underlying process and control in a reasonable way at the same time. More precisely, we study a long-term average impulse control problem, a stochastic version of the classical Faustmann timber harvesting problem. One of the problems that immediately arises is an exploration-exploitation dilemma as is well known for problems in machine learning. We propose a way to deal with this issue by combining exploration and exploitation periods in a suitable way. Our main finding is that this construction can be based on the rates of convergence of estimators for the invariant density. Using this, we obtain that the average cumulated regret is of uniform order $O({T^{-1/3}})$.

Modelling and forecasting homogeneous age-specific mortality rates of multiple countries could lead to improvements in long-term forecasting. Data fed into joint models are often grouped according to nominal attributes, such as geographic regions, ethnic groups, and socioeconomic status, which may still contain heterogeneity and deteriorate the forecast results. Our paper proposes a novel clustering technique to pursue homogeneity among multiple functional time series based on functional panel data modelling to address this issue. Using a functional panel data model with fixed effects, we can extract common functional time series features. These common features could be decomposed into two components: the functional time trend and the mode of variations of functions (functional pattern). The functional time trend reflects the dynamics across time, while the functional pattern captures the fluctuations within curves. The proposed clustering method searches for homogeneous age-specific mortality rates of multiple countries by accounting for both the modes of variations and the temporal dynamics among curves. We demonstrate that the proposed clustering technique outperforms other existing methods through a Monte Carlo simulation and could handle complicated cases with slow decaying eigenvalues. In empirical data analysis, we find that the clustering results of age-specific mortality rates can be explained by the combination of geographic region, ethnic groups, and socioeconomic status. We further show that our model produces more accurate forecasts than several benchmark methods in forecasting age-specific mortality rates.

Safe operation of systems such as robots requires them to plan and execute trajectories subject to safety constraints. When those systems are subject to uncertainties in their dynamics, it is challenging to ensure that the constraints are not violated. In this paper, we propose Safe-CDDP, a safe trajectory optimization and control approach for systems under additive uncertainties and non-linear safety constraints based on constrained differential dynamic programming (DDP). The safety of the robot during its motion is formulated as chance constraints with user-chosen probabilities of constraint satisfaction. The chance constraints are transformed into deterministic ones in DDP formulation by constraint tightening. To avoid over-conservatism during constraint tightening, linear control gains of the feedback policy derived from the constrained DDP are used in the approximation of closed-loop uncertainty propagation in prediction. The proposed algorithm is empirically evaluated on three different robot dynamics with up to 12 degrees of freedom in simulation. The computational feasibility and applicability of the approach are demonstrated with a physical hardware implementation.

We introduce a new metric ($W_\nu$ $\nu$-based Wasserstein metric) on the set of probability measures on $X \subseteq \mathbb{R}^m$, based on a slight refinement of the notion of generalized geodesics with respect to a base measure $\nu$, relevant in particular for the case when $\nu$ is singular with respect to $m$-dimensional Lebesgue measure. $W_\nu$ is defined in terms of an iterated variational problem involving optimal transport to $\nu$; we also characterize it in terms of integrations of classical Wasserstein distance between the conditional probabilities with respect to $\nu$, and through limits of certain multi-marginal optimal transport problems. We also introduce a class of metrics which are dual in a certain sense to $W_\nu$ on the set of measures which are absolutely continuous with respect to a second fixed based measure $\sigma$.As we vary the base measure $\nu$, $W_\nu$ interpolates between the usual quadratic Wasserstein distance and a metric associated with the uniquely defined generalized geodesics obtained when $\nu$ is sufficiently regular. When $\nu$ concentrates on a lower dimensional submanifold of $\mathbb{R}^m$, we prove that the variational problem in the definition of the $\nu$-based Wasserstein distance has a unique solution. We establish geodesic convexity of the usual class of functionals and of the set of source measures $\mu$ such that optimal transport between $\mu$ and $\nu$ satisfies a strengthening of the generalized nestedness condition introduced in \cite{McCannPass20}. We also present two applications of the ideas introduced here. First, our dual metric is used to prove convergence of an iterative scheme to solve a variational problem arising in game theory. We also use the multi-marginal formulation to characterize solutions to the multi-marginal problem by an ordinary differential equation, yielding a new numerical method for it.

Personalized recommender systems are playing an increasingly important role as more content and services become available and users struggle to identify what might interest them. Although matrix factorization and deep learning based methods have proved effective in user preference modeling, they violate the triangle inequality and fail to capture fine-grained preference information. To tackle this, we develop a distance-based recommendation model with several novel aspects: (i) each user and item are parameterized by Gaussian distributions to capture the learning uncertainties; (ii) an adaptive margin generation scheme is proposed to generate the margins regarding different training triplets; (iii) explicit user-user/item-item similarity modeling is incorporated in the objective function. The Wasserstein distance is employed to determine preferences because it obeys the triangle inequality and can measure the distance between probabilistic distributions. Via a comparison using five real-world datasets with state-of-the-art methods, the proposed model outperforms the best existing models by 4-22% in terms of recall@K on Top-K recommendation.

Bipartite graph embedding has recently attracted much attention due to the fact that bipartite graphs are widely used in various application domains. Most previous methods, which adopt random walk-based or reconstruction-based objectives, are typically effective to learn local graph structures. However, the global properties of bipartite graph, including community structures of homogeneous nodes and long-range dependencies of heterogeneous nodes, are not well preserved. In this paper, we propose a bipartite graph embedding called BiGI to capture such global properties by introducing a novel local-global infomax objective. Specifically, BiGI first generates a global representation which is composed of two prototype representations. BiGI then encodes sampled edges as local representations via the proposed subgraph-level attention mechanism. Through maximizing the mutual information between local and global representations, BiGI enables nodes in bipartite graph to be globally relevant. Our model is evaluated on various benchmark datasets for the tasks of top-K recommendation and link prediction. Extensive experiments demonstrate that BiGI achieves consistent and significant improvements over state-of-the-art baselines. Detailed analyses verify the high effectiveness of modeling the global properties of bipartite graph.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司