AI and humans bring complementary skills to group deliberations. Modeling this group decision making is especially challenging when the deliberations include an element of risk and an exploration-exploitation process of appraising the capabilities of the human and AI agents. To investigate this question, we presented a sequence of intellective issues to a set of human groups aided by imperfect AI agents. A group's goal was to appraise the relative expertise of the group's members and its available AI agents, evaluate the risks associated with different actions, and maximize the overall reward by reaching consensus. We propose and empirically validate models of human-AI team decision making under such uncertain circumstances, and show the value of socio-cognitive constructs of prospect theory, influence dynamics, and Bayesian learning in predicting the behavior of human-AI groups.
Interactive machine learning (IML) is a field of research that explores how to leverage both human and computational abilities in decision making systems. IML represents a collaboration between multiple complementary human and machine intelligent systems working as a team, each with their own unique abilities and limitations. This teamwork might mean that both systems take actions at the same time, or in sequence. Two major open research questions in the field of IML are: "How should we design systems that can learn to make better decisions over time with human interaction?" and "How should we evaluate the design and deployment of such systems?" A lack of appropriate consideration for the humans involved can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. Thus, our goal with this work is to present a human-centred guide to designing and evaluating IML systems while mitigating risks. This guide is intended to be used by machine learning practitioners who are responsible for the health, safety, and well-being of interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness, and abiding by applicable legal statutes. With these values and principles in mind, we as a machine learning research community can better achieve goals of augmenting human skills and abilities. This practical guide therefore aims to support many of the responsible decisions necessary throughout the iterative design, development, and dissemination of IML systems.
Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner's Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner's Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.
Photonic accelerators have been intensively studied to provide enhanced information processing capability to benefit from the unique attributes of physical processes. Recently, it has been reported that chaotically oscillating ultrafast time series from a laser, called laser chaos, provides the ability to solve multi-armed bandit (MAB) problems or decision-making problems at GHz order. Furthermore, it has been confirmed that the negatively correlated time-domain structure of laser chaos contributes to the acceleration of decision-making. However, the underlying mechanism of why decision-making is accelerated by correlated time series is unknown. In this paper, we demonstrate a theoretical model to account for the acceleration of decision-making by correlated time sequence. We first confirm the effectiveness of the negative autocorrelation inherent in time series for solving two-armed bandit problems using Fourier transform surrogate methods. We propose a theoretical model that concerns the correlated time series subjected to the decision-making system and the internal status of the system therein in a unified manner, inspired by correlated random walks. We demonstrate that the performance derived analytically by the theory agrees well with the numerical simulations, which confirms the validity of the proposed model and leads to optimal system design. The present study paves the new way for the effectiveness of correlated time series for decision-making, impacting artificial intelligence and other applications.
Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI's potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration.
Gaussian Process (GP) emulators are widely used to approximate complex computer model behaviour across the input space. Motivated by the problem of coupling computer models, recently progress has been made in the theory of the analysis of networks of connected GP emulators. In this paper, we combine these recent methodological advances with classical state-space models to construct a Bayesian decision support system. This approach gives a coherent probability model that produces predictions with the measure of uncertainty in terms of two first moments and enables the propagation of uncertainty from individual decision components. This methodology is used to produce a decision support tool for a UK county council considering low carbon technologies to transform its infrastructure to reach a net-zero carbon target. In particular, we demonstrate how to couple information from an energy model, a heating demand model, and gas and electricity price time-series to quantitatively assess the impact on operational costs of various policy choices and changes in the energy market.
We present our case study that aims to help professional assessors make decisions in human assessment, in which they conduct interviews with assessees and evaluate their suitability for certain job roles. Our workshop with two industrial assessors revealed that a computational system that can extract nonverbal cues of assesses from interview videos would be beneficial to assessors in terms of supporting their decision making. In response, we developed such a system based on an unsupervised anomaly detection algorithm using multimodal behavioral features such as facial keypoints, pose, head pose, and gaze. Moreover, we enabled the system to output how much each feature contributed to the outlierness of the detected cues with the purpose of enhancing its interpretability. We then conducted a preliminary study to examine the validity of the system's output by using 20 actual assessment interview videos and involving the two assessors. The results suggested the advantages of using unsupervised anomaly detection in an interpretable manner by illustrating the informativeness of its outputs for assessors. Our approach, which builds on top of the idea of separation of observation and interpretation in human-AI teaming, will facilitate human decision making in highly contextual domains, such as human assessment, while keeping their trust in the system.
Bayesian model selection provides a powerful framework for objectively comparing models directly from observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (model evidence), which is computationally challenging, prohibiting its use in many high-dimensional Bayesian inverse problems. With Bayesian imaging applications in mind, in this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models for applications that use images to inform decisions under uncertainty. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving l_1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices of dictionary and measurement model.
Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all co-authors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of co-authors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.
Models for dependent data are distinguished by their targets of inference. Marginal models are useful when interest lies in quantifying associations averaged across a population of clusters. When the functional form of a covariate-outcome association is unknown, flexible regression methods are needed to allow for potentially non-linear relationships. We propose a novel marginal additive model (MAM) for modelling cluster-correlated data with non-linear population-averaged associations. The proposed MAM is a unified framework for estimation and uncertainty quantification of a marginal mean model, combined with inference for between-cluster variability and cluster-specific prediction. We propose a fitting algorithm that enables efficient computation of standard errors and corrects for estimation of penalty terms. We demonstrate the proposed methods in simulations and in application to (i) a longitudinal study of beaver foraging behaviour, and (ii) a spatial analysis of Loaloa infection in West Africa. R code for implementing the proposed methodology is available at //github.com/awstringer1/mam.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.