亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Precise ultrasound segmentation is vital for clinicians to provide comprehensive diagnoses. However, developing a model that accurately segments ultrasound images is challenging due to the images' low quality and the scarcity of extensive labeled data. This results in two main solutions: (1) optimizing multi-scale feature representations, and (2) increasing resistance to data dependency. The first approach necessitates an advanced network architecture, but a handcrafted network is knowledge-intensive and often yields limited improvement. In contrast, neural architecture search (NAS) can more easily attain optimal performance, albeit with significant computational costs. Regarding the second issue, semi-supervised learning (SSL) is an established method, but combining it with complex NAS faces the risk of overfitting to a few labeled samples without extra constraints. Therefore, we introduce a hybrid constraint-driven semi-supervised Transformer-NAS (HCS-TNAS), balancing both solutions for segmentation. HCS-TNAS includes an Efficient NAS-ViT module for multi-scale token search before ViT's attention calculation, effectively capturing contextual and local information with lower computational costs, and a hybrid SSL framework that adds network independence and contrastive learning to the optimization for solving data dependency. By further developing a stage-wise optimization strategy, a rational network structure is identified. Experiments on public datasets show that HCS-TNAS achieves state-of-the-art performance, pushing the limit of ultrasound segmentation.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議(yi)。 Publisher:IFIP。 SIT:

When solving inverse problems, it is increasingly popular to use pre-trained diffusion models as plug-and-play priors. This framework can accommodate different forward models without re-training while preserving the generative capability of diffusion models. Despite their success in many imaging inverse problems, most existing methods rely on privileged information such as derivative, pseudo-inverse, or full knowledge about the forward model. This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications. To address this issue, we propose Ensemble Kalman Diffusion Guidance (EnKG) for diffusion models, a derivative-free approach that can solve inverse problems by only accessing forward model evaluations and a pre-trained diffusion model prior. We study the empirical effectiveness of our method across various inverse problems, including scientific settings such as inferring fluid flows and astronomical objects, which are highly non-linear inverse problems that often only permit black-box access to the forward model.

The key feature of model-driven semantic communication is the propagation of the model. The semantic model component (SMC) is designed to drive the intelligent model to transmit in the physical channel, allowing the intelligence to flow through the networks. According to the characteristics of neural networks with common and individual model parameters, this paper designs the cross-source-domain and cross-task semantic component model. Considering that the basic model is deployed on the edge node, the large server node updates the edge node by transmitting only the semantic component model to the edge node so that the edge node can handle different sources and different tasks. In addition, this paper also discusses how channel noise affects the performance of the model and proposes methods of injection noise and regularization to improve the noise resistance of the model. Experiments show that SMCs use smaller model parameters to achieve cross-source, cross-task functionality while maintaining performance and improving the model's tolerance to noise. Finally, a component transfer-based unmanned vehicle tracking prototype was implemented to verify the feasibility of model components in practical applications.

Volatile memristors have recently gained popularity as promising devices for neuromorphic circuits, capable of mimicking the leaky function of neurons and offering advantages over capacitor-based circuits in terms of power dissipation and area. Additionally, volatile memristors are useful as selector devices and for hardware security circuits such as physical unclonable functions. To facilitate the design and simulation of circuits, a compact behavioral model is essential. This paper proposes V-VTEAM, a compact, simple, general, and flexible behavioral model for volatile memristors, inspired by the VTEAM nonvolatile memristor model and developed in MATLAB. The validity of the model is demonstrated by fitting it to an ion drift/diffusion-based Ag/SiOx/C/W volatile memristor, achieving a relative root mean error square of 4.5%.

Incomplete or missing data in three-dimensional (3D) models can lead to erroneous or flawed renderings, limiting their usefulness in applications such as visualization, geometric computation, and 3D printing. Conventional surface-repair techniques often fail to infer complex geometric details in missing areas. Neural networks successfully address hole-filling tasks in 2D images using inpainting techniques. The combination of surface reconstruction algorithms, guided by the model's curvature properties and the creativity of neural networks in the inpainting processes should provide realistic results in the hole completion task. In this paper, we propose a novel method entitled SR-CurvANN (Surface Reconstruction Based on Curvature-Aware Neural Networks) that incorporates neural network-based 2D inpainting to effectively reconstruct 3D surfaces. We train the neural networks with images that represent planar representations of the curvature at vertices of hundreds of 3D models. Once the missing areas have been inferred, a coarse-to-fine surface deformation process ensures that the surface fits the reconstructed curvature image. Our proposal makes it possible to learn and generalize patterns from a wide variety of training 3D models, generating comprehensive inpainted curvature images and surfaces. Experiments conducted on 959 models with several holes have demonstrated that SR-CurvANN excels in the shape completion process, filling holes with a remarkable level of realism and precision.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司