Recently, 2D convolution has been found unqualified in sound event detection (SED). It enforces translation equivariance on sound events along frequency axis, which is not a shift-invariant dimension. To address this issue, dynamic convolution is used to model the frequency dependency of sound events. In this paper, we proposed the first full-dynamic method named full-frequency dynamic convolution (FFDConv). FFDConv generates frequency kernels for every frequency band, which is designed directly in the structure for frequency-dependent modeling. It physically furnished 2D convolution with the capability of frequency-dependent modeling. FFDConv outperforms not only the baseline by 6.6% in DESED real validation dataset in terms of PSDS1, but outperforms the other full-dynamic methods. In addition, by visualizing features of sound events, we observed that FFDConv could effectively extract coherent features in specific frequency bands, consistent with the vocal continuity of sound events. This proves that FFDConv has great frequency-dependent perception ability.
The proposed two-dimensional geometrically exact beam element extends our previous work by including the effects of shear distortion, and also of distributed forces and moments acting along the beam. The general flexibility-based formulation exploits the kinematic equations combined with the inverted sectional equations and the integrated form of equilibrium equations. The resulting set of three first-order differential equations is discretized by finite differences and the boundary value problem is converted into an initial value problem using the shooting method. Due to the special structure of the governing equations, the scheme remains explicit even though the first derivatives are approximated by central differences, leading to high accuracy. The main advantage of the adopted approach is that the error can be efficiently reduced by refining the computational grid used for finite differences at the element level while keeping the number of global degrees of freedom low. The efficiency is also increased by dealing directly with the global centerline coordinates and sectional inclination with respect to global axes as the primary unknowns at the element level, thereby avoiding transformations between local and global coordinates. Two formulations of the sectional equations, referred to as the Reissner and Ziegler models, are presented and compared. In particular, stability of an axially loaded beam/column is investigated and the connections to the Haringx and Engesser stability theories are discussed. Both approaches are tested in a series of numerical examples, which illustrate (i) high accuracy with quadratic convergence when the spatial discretization is refined, (ii) easy modeling of variable stiffness along the element (such as rigid joint offsets), (iii) efficient and accurate characterization of the buckling and post-buckling behavior.
We provide a tight asymptotic characterization of the error exponent for classical-quantum channel coding assisted by activated non-signaling correlations. Namely, we find that the optimal exponent--also called reliability function--is equal to the well-known sphere packing bound, which can be written as a single-letter formula optimized over Petz-R\'enyi divergences. Remarkably, there is no critical rate and as such our characterization remains tight for arbitrarily low rates below the capacity. On the achievability side, we further extend our results to fully quantum channels. Our proofs rely on semi-definite program duality and a dual representation of the Petz-R\'enyi divergences via Young inequalities.
Nonparametric procedures are more powerful for detecting interaction in two-way ANOVA when the data are non-normal. In this paper, we compute null critical values for the aligned rank-based tests (APCSSA/APCSSM) where the levels of the factors are between 2 and 6. We compare the performance of these new procedures with the ANOVA F-test for interaction, the adjusted rank transform test (ART), Conover's rank transform procedure (RT), and a rank-based ANOVA test (raov) using Monte Carlo simulations. The new procedures APCSSA/APCSSM are comparable with existing competitors in all settings. Even though there is no single dominant test in detecting interaction effects for non-normal data, nonparametric procedure APCSSM is the most highly recommended procedure for Cauchy errors settings.
We develop a numerical method for simulation of incompressible viscous flows by integrating the technology of random vortex method with the core idea of Large Eddy Simulation (LES). Specifically, we utilize the filtering method in LES, interpreted as spatial averaging, along with the integral representation theorem for parabolic equations, to achieve a closure scheme which may be used for calculating solutions of Navier-Stokes equations. This approach circumvents the challenge associated with handling the non-locally integrable 3-dimensional integral kernel in the random vortex method and facilitates the computation of numerical solutions for flow systems via Monte-Carlo method. Numerical simulations are carried out for both laminar and turbulent flows, demonstrating the validity and effectiveness of the method.
We propose a fast scheme for approximating the Mittag-Leffler function by an efficient sum-of-exponentials (SOE), and apply the scheme to the viscoelastic model of wave propagation with mixed finite element methods for the spatial discretization and the Newmark-beta scheme for the second-order temporal derivative. Compared with traditional L1 scheme for fractional derivative, our fast scheme reduces the memory complexity from $\mathcal O(N_sN) $ to $\mathcal O(N_sN_{exp})$ and the computation complexity from $\mathcal O(N_sN^2)$ to $\mathcal O(N_sN_{exp}N)$, where $N$ denotes the total number of temporal grid points, $N_{exp}$ is the number of exponentials in SOE, and $N_s$ represents the complexity of memory and computation related to the spatial discretization. Numerical experiments are provided to verify the theoretical results.
We derive a mixed-dimensional 3D-1D formulation of the electrostatic equation in two domains with different dielectric constants to compute, with an affordable computational cost, the electric field and potential in the relevant case of thin inclusions in a larger 3D domain. The numerical solution is obtained by Mixed Finite Elements for the 3D problem and Finite Elements on the 1D domain. We analyze some test cases with simple geometries to validate the proposed approach against analytical solutions, and perform comparisons with the fully resolved 3D problem. We treat the case where ramifications are present in the one-dimensional domain and show some results on the geometry of an electrical treeing, a ramified structure that propagates in insulators causing their failure.
A central task in knowledge compilation is to compile a CNF-SAT instance into a succinct representation format that allows efficient operations such as testing satisfiability, counting, or enumerating all solutions. Useful representation formats studied in this area range from ordered binary decision diagrams (OBDDs) to circuits in decomposable negation normal form (DNNFs). While it is known that there exist CNF formulas that require exponential size representations, the situation is less well studied for other types of constraints than Boolean disjunctive clauses. The constraint satisfaction problem (CSP) is a powerful framework that generalizes CNF-SAT by allowing arbitrary sets of constraints over any finite domain. The main goal of our work is to understand for which type of constraints (also called the constraint language) it is possible to efficiently compute representations of polynomial size. We answer this question completely and prove two tight characterizations of efficiently compilable constraint languages, depending on whether target format is structured. We first identify the combinatorial property of ``strong blockwise decomposability'' and show that if a constraint language has this property, we can compute DNNF representations of linear size. For all other constraint languages we construct families of CSP-instances that provably require DNNFs of exponential size. For a subclass of ``strong uniformly blockwise decomposable'' constraint languages we obtain a similar dichotomy for structured DNNFs. In fact, strong (uniform) blockwise decomposability even allows efficient compilation into multi-valued analogs of OBDDs and FBDDs, respectively. Thus, we get complete characterizations for all knowledge compilation classes between O(B)DDs and DNNFs.
Researchers have long run regressions of an outcome variable (Y) on a treatment (D) and covariates (X) to estimate treatment effects. Even absent unobserved confounding, the regression coefficient on D in this setup reports a conditional variance weighted average of strata-wise average effects, not generally equal to the average treatment effect (ATE). Numerous proposals have been offered to cope with this "weighting problem", including interpretational tools to help characterize the weights and diagnostic aids to help researchers assess the potential severity of this problem. We make two contributions that together suggest an alternative direction for researchers and this literature. Our first contribution is conceptual, demystifying these weights. Simply put, under heterogeneous treatment effects (and varying probability of treatment), the linear regression of Y on D and X will be misspecified. The "weights" of regression offer one characterization for the coefficient from regression that helps to clarify how it will depart from the ATE. We also derive a more general expression for the weights than what is usually referenced. Our second contribution is practical: as these weights simply characterize misspecification bias, we suggest simply avoiding them through an approach that tolerate heterogeneous effects. A wide range of longstanding alternatives (regression-imputation/g-computation, interacted regression, and balancing weights) relax specification assumptions to allow heterogeneous effects. We make explicit the assumption of "separate linearity", under which each potential outcome is separately linear in X. This relaxation of conventional linearity offers a common justification for all of these methods and avoids the weighting problem, at an efficiency cost that will be small when there are few covariates relative to sample size.
This extended abstract was presented at the Nectar Track of ECML PKDD 2024 in Vilnius, Lithuania. The content supplements a recently published paper "Laws of Macroevolutionary Expansion" in the Proceedings of the National Academy of Sciences (PNAS).
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.