The broad adoption of the Internet of Things during the last decade has widened the application horizons of distributed sensor networks, ranging from smart home appliances to automation, including remote sensing. Typically, these distributed systems are composed of several nodes attached to sensing devices linked by a heterogeneous communication network. The unreliable nature of these systems (e.g., devices might run out of energy or communications might become unavailable) drives practitioners to implement heavyweight fault tolerance mechanisms to identify those untrustworthy nodes that are misbehaving erratically and, thus, ensure that the sensed data from the IoT domain are correct. The overhead in the communication network degrades the overall system, especially in scenarios with limited available bandwidth that are exposed to severely harsh conditions. Quantum Internet might be a promising alternative to minimize traffic congestion and avoid worsening reliability due to the link saturation effect by using a quantum consensus layer. In this regard, the purpose of this paper is to explore and simulate the usage of quantum consensus architecture in one of the most challenging natural environments in the world where researchers need a responsive sensor network: the remote sensing of permafrost in Antarctica. More specifically, this paper 1) describes the use case of permafrost remote sensing in Antarctica, 2) proposes the usage of a quantum consensus management plane to reduce the traffic overhead associated with fault tolerance protocols, and 3) discusses, by means of simulation, possible improvements to increase the trustworthiness of a holistic telemetry system by exploiting the complexity reduction offered by the quantum parallelism. Collected insights from this research can be generalized to current and forthcoming IoT environments.
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
Incorporating equivariance to symmetry groups as a constraint during neural network training can improve performance and generalization for tasks exhibiting those symmetries, but such symmetries are often not perfectly nor explicitly present. This motivates algorithmically optimizing the architectural constraints imposed by equivariance. We propose the equivariance relaxation morphism, which preserves functionality while reparameterizing a group equivariant layer to operate with equivariance constraints on a subgroup, as well as the [G]-mixed equivariant layer, which mixes layers constrained to different groups to enable within-layer equivariance optimization. We further present evolutionary and differentiable neural architecture search (NAS) algorithms that utilize these mechanisms respectively for equivariance-aware architectural optimization. Experiments across a variety of datasets show the benefit of dynamically constrained equivariance to find effective architectures with approximate equivariance.
While existing security protocols were designed with a focus on the core network, the enhancement of the security of the B5G access network becomes of critical importance. Despite the strengthening of 5G security protocols with respect to LTE, there are still open issues that have not been fully addressed. This work is articulated around the premise that rethinking the security design bottom up, starting at the physical layer, is not only viable in 6G but importantly, arises as an efficient way to overcome security hurdles in novel use cases, notably massive machine type communications (mMTC), ultra reliable low latency communications (URLLC) and autonomous cyberphysical systems. Unlike existing review papers that treat physical layer security orthogonally to cryptography, we will try to provide a few insights of underlying connections. Discussing many practical issues, we will present a comprehensive review of the state-of-the-art in i) secret key generation from shared randomness, ii) the wiretap channel and fundamental limits, iii) authentication of devices using physical unclonable functions (PUFs), localization and multi-factor authentication, and, iv) jamming attacks at the physical layer. We finally conclude with the proposers' aspirations for the 6G security landscape, in the hyper-connectivity and semantic communications era.
Quantum machine learning is a rapidly evolving field of research that could facilitate important applications for quantum computing and also significantly impact data-driven sciences. In our work, based on various arguments from complexity theory and physics, we demonstrate that a single Kerr mode can provide some "quantum enhancements" when dealing with kernel-based methods. Using kernel properties, neural tangent kernel theory, first-order perturbation theory of the Kerr non-linearity, and non-perturbative numerical simulations, we show that quantum enhancements could happen in terms of convergence time and generalization error. Furthermore, we make explicit indications on how higher-dimensional input data could be considered. Finally, we propose an experimental protocol, that we call \emph{quantum Kerr learning}, based on circuit QED.
This paper considers the reconfigurable intelligent surface (RIS)-assisted multi-user communications, where an RIS is used to assist the base station (BS) for serving multiple users. The RIS consisting of passive reflecting elements can manipulate the reflected direction of the incoming electromagnetic waves by adjusting the phase shifts of the reflecting elements. Alternating optimization (AO) based approach is commonly used to determine the phase shifts of the RIS elements. While AO-based approaches have shown significant gain of RIS, the complexity is quite high due to the coupled structure of the cascade channel from the BS through RIS to the user. In addition, the sub-wavelength structure of the RIS introduces spatial correlation that may cause strong interference to users. To handle severe multi-user interference over correlated channels, we consider adaptive user grouping previously proposed for massive mutli-input and multi-output (MIMO) systems and propose two low-complexity beamforming design methods, depending on whether the grouping result is taken into account. Simulation results demonstrate the superior sum rate achieved by the proposed methods than that without user grouping. Besides, the proposed methods can perform similarly to the AO-based approach but with much lower complexity.
A central challenge of social computing research is to enable people to communicate expressively with each other remotely. Augmented reality has great promise for expressive communication since it enables communication beyond texts and photos and towards immersive experiences rendered in recipients' physical environments. Little research, however, has explored AR's potential for everyday interpersonal communication. In this work, we prototype an AR messaging system, ARwand, to understand people's behaviors and perceptions around communicating with friends via AR messaging. We present our findings under four themes observed from a user study with 24 participants, including the types of immersive messages people choose to send to each other, which factors contribute to a sense of immersiveness, and what concerns arise over this new form of messaging. We discuss important implications of our findings on the design of future immersive communication systems.
The matrix-based R\'enyi's entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it widely applied in statistical inference and machine learning tasks. However, this information theoretical quantity is not robust against noise in the data, and is computationally prohibitive in large-scale applications. To address these issues, we propose a novel measure of information, termed low-rank matrix-based R\'enyi's entropy, based on low-rank representations of infinitely divisible kernel matrices. The proposed entropy functional inherits the specialty of of the original definition to directly quantify information from data, but enjoys additional advantages including robustness and effective calculation. Specifically, our low-rank variant is more sensitive to informative perturbations induced by changes in underlying distributions, while being insensitive to uninformative ones caused by noises. Moreover, low-rank R\'enyi's entropy can be efficiently approximated by random projection and Lanczos iteration techniques, reducing the overall complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2 s)$ or even $\mathcal{O}(ns^2)$, where $n$ is the number of data samples and $s \ll n$. We conduct large-scale experiments to evaluate the effectiveness of this new information measure, demonstrating superior results compared to matrix-based R\'enyi's entropy in terms of both performance and computational efficiency.
The primary obstacle to developing technologies for low-resource languages is the lack of representative, usable data. In this paper, we report the deployment of technology-driven data collection methods for creating a corpus of more than 60,000 translations from Hindi to Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. During this process, we help expand information access in Gondi across 2 different dimensions (a) The creation of linguistic resources that can be used by the community, such as a dictionary, children's stories, Gondi translations from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform; (b) Enabling its use in the digital domain by developing a Hindi-Gondi machine translation model, which is compressed by nearly 4 times to enable it's edge deployment on low-resource edge devices and in areas of little to no internet connectivity. We also present preliminary evaluations of utilizing the developed machine translation model to provide assistance to volunteers who are involved in collecting more data for the target language. Through these interventions, we not only created a refined and evaluated corpus of 26,240 Hindi-Gondi translations that was used for building the translation model but also engaged nearly 850 community members who can help take Gondi onto the internet.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.