亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The graduated optimization approach is a heuristic method for finding globally optimal solutions for nonconvex functions and has been theoretically analyzed in several studies. This paper defines a new family of nonconvex functions for graduated optimization, discusses their sufficient conditions, and provides a convergence analysis of the graduated optimization algorithm for them. It shows that stochastic gradient descent (SGD) with mini-batch stochastic gradients has the effect of smoothing the function, the degree of which is determined by the learning rate and batch size. This finding provides theoretical insights on why large batch sizes fall into sharp local minima, why decaying learning rates and increasing batch sizes are superior to fixed learning rates and batch sizes, and what the optimal learning rate scheduling is. To the best of our knowledge, this is the first paper to provide a theoretical explanation for these aspects. Moreover, a new graduated optimization framework that uses a decaying learning rate and increasing batch size is analyzed and experimental results of image classification that support our theoretical findings are reported.

相關內容

Generative models of observations under interventions have been a vibrant topic of interest across machine learning and the sciences in recent years. For example, in drug discovery, there is a need to model the effects of diverse interventions on cells in order to characterize unknown biological mechanisms of action. We propose the Sparse Additive Mechanism Shift Variational Autoencoder, SAMS-VAE, to combine compositionality, disentanglement, and interpretability for perturbation models. SAMS-VAE models the latent state of a perturbed sample as the sum of a local latent variable capturing sample-specific variation and sparse global variables of latent intervention effects. Crucially, SAMS-VAE sparsifies these global latent variables for individual perturbations to identify disentangled, perturbation-specific latent subspaces that are flexibly composable. We evaluate SAMS-VAE both quantitatively and qualitatively on a range of tasks using two popular single cell sequencing datasets. In order to measure perturbation-specific model-properties, we also introduce a framework for evaluation of perturbation models based on average treatment effects with links to posterior predictive checks. SAMS-VAE outperforms comparable models in terms of generalization across in-distribution and out-of-distribution tasks, including a combinatorial reasoning task under resource paucity, and yields interpretable latent structures which correlate strongly to known biological mechanisms. Our results suggest SAMS-VAE is an interesting addition to the modeling toolkit for machine learning-driven scientific discovery.

In the field of neural data compression, the prevailing focus has been on optimizing algorithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual quality. With increasing amounts of data consumed by machines rather than humans, a new paradigm of machine-oriented compression$\unicode{x2013}$which prioritizes the retention of features salient for machine perception over traditional human-centric criteria$\unicode{x2013}$has emerged, creating several new challenges to the development, evaluation, and deployment of systems utilizing lossy compression. In particular, it is unclear how different approaches to lossy compression will affect the performance of downstream machine perception tasks. To address this under-explored area, we evaluate various perception models$\unicode{x2013}$including image classification, image segmentation, speech recognition, and music source separation$\unicode{x2013}$under severe lossy compression. We utilize several popular codecs spanning conventional, neural, and generative compression architectures. Our results indicate three key findings: (1) using generative compression, it is feasible to leverage highly compressed data while incurring a negligible impact on machine perceptual quality; (2) machine perceptual quality correlates strongly with deep similarity metrics, indicating a crucial role of these metrics in the development of machine-oriented codecs; and (3) using lossy compressed datasets, (e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy compression increases machine perceptual quality rather than degrading it. To encourage engagement on this growing area of research, our code and experiments are available at: //github.com/danjacobellis/MPQ.

In unitary property testing a quantum algorithm, also known as a tester, is given query access to a black-box unitary and has to decide whether it satisfies some property. We propose a new technique for proving lower bounds on the quantum query complexity of unitary property testing and related problems, which utilises the connection between unitary property testing and unitary channel discrimination. The main advantage of this technique is that all obtained lower bounds hold for any $\mathsf{C}$-tester with $\mathsf{C} \subseteq \mathsf{QMA}(\text{poly(n)} / \mathsf{qpoly}$, showing that even having access to both (unentangled) quantum proofs and advice does not help for many unitary problems. We apply our technique to prove lower bounds for problems like quantum phase estimation, the entanglement entropy problem, quantum Gibbs sampling and more, removing all logarithmic factors in the lower bounds obtained by the sample-to-query lifting theorem of Wang and Zhang (2023). As a direct corollary, we show that there exists a quantum oracle relative to which $\mathsf{QMA}(\text{poly(n)} / \mathsf{qpoly} \not\supset \mathsf{SBQP}$.

Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of strong law of large numbers and a commonly used V4 Lyapunov drift condition and trivially holds if the Markov chain is finite and irreducible.

Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $\mathcal{C}$ bounded clusters can be separated with only a single layer of $\mathcal{C}$ quadratic neurons.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem. In addition, we discuss generalizability and computational cost of the learned extension operators.

Neural combinatorial optimization (NCO) is a promising learning-based approach for solving challenging combinatorial optimization problems without specialized algorithm design by experts. However, most constructive NCO methods cannot solve problems with large-scale instance sizes, which significantly diminishes their usefulness for real-world applications. In this work, we propose a novel Light Encoder and Heavy Decoder (LEHD) model with a strong generalization ability to address this critical issue. The LEHD model can learn to dynamically capture the relationships between all available nodes of varying sizes, which is beneficial for model generalization to problems of various scales. Moreover, we develop a data-efficient training scheme and a flexible solution construction mechanism for the proposed LEHD model. By training on small-scale problem instances, the LEHD model can generate nearly optimal solutions for the Travelling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP) with up to 1000 nodes, and also generalizes well to solve real-world TSPLib and CVRPLib problems. These results confirm our proposed LEHD model can significantly improve the state-of-the-art performance for constructive NCO. The code is available at //github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD.

While preconditioning is a long-standing concept to accelerate iterative methods for linear systems, generalizations to matrix functions are still in their infancy. We go a further step in this direction, introducing polynomial preconditioning for Krylov subspace methods which approximate the action of the matrix square root and inverse square root on a vector. Preconditioning reduces the subspace size and therefore avoids the storage problem together with -- for non-Hermitian matrices -- the increased computational cost per iteration that arises in the unpreconditioned case. Polynomial preconditioning is an attractive alternative to current restarting or sketching approaches since it is simpler and computationally more efficient. We demonstrate this for several numerical examples.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司