亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Human capabilities in understanding visual relations are far superior to those of AI systems, especially for previously unseen objects. For example, while AI systems struggle to determine whether two such objects are visually the same or different, humans can do so with ease. Active vision theories postulate that the learning of visual relations is grounded in actions that we take to fixate objects and their parts by moving our eyes. In particular, the low-dimensional spatial information about the corresponding eye movements is hypothesized to facilitate the representation of relations between different image parts. Inspired by these theories, we develop a system equipped with a novel Glimpse-based Active Perception (GAP) that sequentially glimpses at the most salient regions of the input image and processes them at high resolution. Importantly, our system leverages the locations stemming from the glimpsing actions, along with the visual content around them, to represent relations between different parts of the image. The results suggest that the GAP is essential for extracting visual relations that go beyond the immediate visual content. Our approach reaches state-of-the-art performance on several visual reasoning tasks being more sample-efficient, and generalizing better to out-of-distribution visual inputs than prior models.

相關內容

In industry, online randomized controlled experiment (a.k.a A/B experiment) is a standard approach to measure the impact of a causal change. These experiments have small treatment effect to reduce the potential blast radius. As a result, these experiments often lack statistical significance due to low signal-to-noise ratio. To improve the precision (or reduce standard error), we introduce the idea of trigger observations where the output of the treatment and the control model are different. We show that the evaluation with full information about trigger observations (full knowledge) improves the precision in comparison to a baseline method. However, detecting all such trigger observations is a costly affair, hence we propose a sampling based evaluation method (partial knowledge) to reduce the cost. The randomness of sampling introduces bias in the estimated outcome. We theoretically analyze this bias and show that the bias is inversely proportional to the number of observations used for sampling. We also compare the proposed evaluation methods using simulation and empirical data. In simulation, evaluation with full knowledge reduces the standard error as much as 85%. In empirical setup, evaluation with partial knowledge reduces the standard error by 36.48%.

The world is facing a multitude of challenges that hinder the development of human civilization and the well-being of humanity on the planet. The Sustainable Development Goals (SDGs) were formulated by the United Nations in 2015 to address these global challenges by 2030. Natural language processing techniques can help uncover discussions on SDGs within research literature. We propose a completely automated pipeline to 1) fetch content from the Scopus database and prepare datasets dedicated to five groups of SDGs; 2) perform topic modeling, a statistical technique used to identify topics in large collections of textual data; and 3) enable topic exploration through keywords-based search and topic frequency time series extraction. For topic modeling, we leverage the stack of BERTopic scaled up to be applied on large corpora of textual documents (we find hundreds of topics on hundreds of thousands of documents), introducing i) a novel LLM-based embeddings computation for representing scientific abstracts in the continuous space and ii) a hyperparameter optimizer to efficiently find the best configuration for any new big datasets. We additionally produce the visualization of results on interactive dashboards reporting topics' temporal evolution. Results are made inspectable and explorable, contributing to the interpretability of the topic modeling process. Our proposed LLM-based topic modeling pipeline for big-text datasets allows users to capture insights on the evolution of the attitude toward SDGs within scientific abstracts in the 2006-2023 time span. All the results are reproducible by using our system; the workflow can be generalized to be applied at any point in time to any big corpus of textual documents.

Recent advances in artificial intelligence (AI) have produced systems capable of increasingly sophisticated performance on cognitive tasks. However, AI systems still struggle in critical ways: unpredictable and novel environments (robustness), lack of transparency in their reasoning (explainability), challenges in communication and commitment (cooperation), and risks due to potential harmful actions (safety). We argue that these shortcomings stem from one overarching failure: AI systems lack wisdom. Drawing from cognitive and social sciences, we define wisdom as the ability to navigate intractable problems - those that are ambiguous, radically uncertain, novel, chaotic, or computationally explosive - through effective task-level and metacognitive strategies. While AI research has focused on task-level strategies, metacognition - the ability to reflect on and regulate one's thought processes - is underdeveloped in AI systems. In humans, metacognitive strategies such as recognizing the limits of one's knowledge, considering diverse perspectives, and adapting to context are essential for wise decision-making. We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety. By focusing on developing wise AI, we suggest an alternative to aligning AI with specific human values - a task fraught with conceptual and practical difficulties. Instead, wise AI systems can thoughtfully navigate complex situations, account for diverse human values, and avoid harmful actions. We discuss potential approaches to building wise AI, including benchmarking metacognitive abilities and training AI systems to employ wise reasoning. Prioritizing metacognition in AI research will lead to systems that act not only intelligently but also wisely in complex, real-world situations.

While overparameterization is known to benefit generalization, its impact on Out-Of-Distribution (OOD) detection is less understood. This paper investigates the influence of model complexity in OOD detection. We propose an expected OOD risk metric to evaluate classifiers confidence on both training and OOD samples. Leveraging Random Matrix Theory, we derive bounds for the expected OOD risk of binary least-squares classifiers applied to Gaussian data. We show that the OOD risk depicts an infinite peak, when the number of parameters is equal to the number of samples, which we associate with the double descent phenomenon. Our experimental study on different OOD detection methods across multiple neural architectures extends our theoretical insights and highlights a double descent curve. Our observations suggest that overparameterization does not necessarily lead to better OOD detection. Using the Neural Collapse framework, we provide insights to better understand this behavior. To facilitate reproducibility, our code will be made publicly available upon publication.

In real-world data, information is stored in extremely large feature vectors. These variables are typically correlated due to complex interactions involving many features simultaneously. Such correlations qualitatively correspond to semantic roles and are naturally recognized by both the human brain and artificial neural networks. This recognition enables, for instance, the prediction of missing parts of an image or text based on their context. We present a method to detect these correlations in high-dimensional data represented as binary numbers. We estimate the binary intrinsic dimension of a dataset, which quantifies the minimum number of independent coordinates needed to describe the data, and is therefore a proxy of semantic complexity. The proposed algorithm is largely insensitive to the so-called curse of dimensionality, and can therefore be used in big data analysis. We test this approach identifying phase transitions in model magnetic systems and we then apply it to the detection of semantic correlations of images and text inside deep neural networks.

Volumetric video, the capture and display of three-dimensional (3D) imagery, has emerged as a revolutionary technology poised to transform the media landscape, enabling immersive experiences that transcend the limitations of traditional 2D video. One of the key challenges in this domain is the efficient delivery of these high-bandwidth, data-intensive volumetric video streams, which requires innovative transcoding and compression techniques. This research paper explores the state-of-the-art in volumetric video compression and delivery, with a focus on the potential of AI-driven solutions to address the unique challenges posed by this emerging medium.

Since the success of GPT, large language models (LLMs) have been revolutionizing machine learning and have initiated the so-called LLM prompting paradigm. In the era of LLMs, people train a single general-purpose LLM and provide the LLM with different prompts to perform different tasks. However, such empirical success largely lacks theoretical understanding. Here, we present the first theoretical study on the LLM prompting paradigm to the best of our knowledge. In this work, we show that prompting is in fact Turing-complete: there exists a finite-size Transformer such that for any computable function, there exists a corresponding prompt following which the Transformer computes the function. Furthermore, we show that even though we use only a single finite-size Transformer, it can still achieve nearly the same complexity bounds as that of the class of all unbounded-size Transformers. Overall, our result reveals that prompting can enable a single finite-size Transformer to be efficiently universal, which establishes a theoretical underpinning for prompt engineering in practice.

Invasive brain-computer interfaces with Electrocorticography (ECoG) have shown promise for high-performance speech decoding in medical applications, but less damaging methods like intracranial stereo-electroencephalography (sEEG) remain underexplored. With rapid advances in representation learning, leveraging abundant recordings to enhance speech decoding is increasingly attractive. However, popular methods often pre-train temporal models based on brain-level tokens, overlooking that brain activities in different regions are highly desynchronized during tasks. Alternatively, they pre-train spatial-temporal models based on channel-level tokens but fail to evaluate them on challenging tasks like speech decoding, which requires intricate processing in specific language-related areas. To address this issue, we collected a well-annotated Chinese word-reading sEEG dataset targeting language-related brain networks from 12 subjects. Using this benchmark, we developed the Du-IN model, which extracts contextual embeddings based on region-level tokens through discrete codex-guided mask modeling. Our model achieves state-of-the-art performance on the 61-word classification task, surpassing all baselines. Model comparisons and ablation studies reveal that our design choices, including (i) temporal modeling based on region-level tokens by utilizing 1D depthwise convolution to fuse channels in the ventral sensorimotor cortex (vSMC) and superior temporal gyrus (STG) and (ii) self-supervision through discrete codex-guided mask modeling, significantly contribute to this performance. Overall, our approach -- inspired by neuroscience findings and capitalizing on region-level representations from specific brain regions -- is suitable for invasive brain modeling and represents a promising neuro-inspired AI approach in brain-computer interfaces.

This paper presents a new approach to urban sustainability assessment through the use of Large Language Models (LLMs) to streamline the use of the ISO 37101 framework to automate and standardise the assessment of urban initiatives against the six "sustainability purposes" and twelve "issues" outlined in the standard. The methodology includes the development of a custom prompt based on the standard definitions and its application to two different datasets: 527 projects from the Paris Participatory Budget and 398 activities from the PROBONO Horizon 2020 project. The results show the effectiveness of LLMs in quickly and consistently categorising different urban initiatives according to sustainability criteria. The approach is particularly promising when it comes to breaking down silos in urban planning by providing a holistic view of the impact of projects. The paper discusses the advantages of this method over traditional human-led assessments, including significant time savings and improved consistency. However, it also points out the importance of human expertise in interpreting results and ethical considerations. This study hopefully can contribute to the growing body of work on AI applications in urban planning and provides a novel method for operationalising standardised sustainability frameworks in different urban contexts.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司