亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Linear regression is a fundamental tool for statistical analysis. This has motivated the development of linear regression methods that also satisfy differential privacy and thus guarantee that the learned model reveals little about any one data point used to construct it. However, existing differentially private solutions assume that the end user can easily specify good data bounds and hyperparameters. Both present significant practical obstacles. In this paper, we study an algorithm which uses the exponential mechanism to select a model with high Tukey depth from a collection of non-private regression models. Given $n$ samples of $d$-dimensional data used to train $m$ models, we construct an efficient analogue using an approximate Tukey depth that runs in time $O(d^2n + dm\log(m))$. We find that this algorithm obtains strong empirical performance in the data-rich setting with no data bounds or hyperparameter selection required.

相關內容

 線性回歸是利用數理統計中回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法,運用十分廣泛。其表達形式為y = w'x+e,e為誤差服從均值為0的正態分布。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

We introduce a new mechanism for stochastic convex optimization (SCO) with user-level differential privacy guarantees. The convergence rates of this mechanism are similar to those in the prior work of Levy et al. (2021); Narayanan et al. (2022), but with two important improvements. Our mechanism does not require any smoothness assumptions on the loss. Furthermore, our bounds are also the first where the minimum number of users needed for user-level privacy has no dependence on the dimension and only a logarithmic dependence on the desired excess error. The main idea underlying the new mechanism is to show that the optimizers of strongly convex losses have low local deletion sensitivity, along with an output perturbation method for functions with low local deletion sensitivity, which could be of independent interest.

Randomized smoothing is a technique for providing provable robustness guarantees against adversarial attacks while making minimal assumptions about a classifier. This method relies on taking a majority vote of any base classifier over multiple noise-perturbed inputs to obtain a smoothed classifier, and it remains the tool of choice to certify deep and complex neural network models. Nonetheless, non-trivial performance of such smoothed classifier crucially depends on the base model being trained on noise-augmented data, i.e., on a smoothed input distribution. While widely adopted in practice, it is still unclear how this noisy training of the base classifier precisely affects the risk of the robust smoothed classifier, leading to heuristics and tricks that are poorly understood. In this work we analyze these trade-offs theoretically in a binary classification setting, proving that these common observations are not universal. We show that, without making stronger distributional assumptions, no benefit can be expected from predictors trained with noise-augmentation, and we further characterize distributions where such benefit is obtained. Our analysis has direct implications to the practical deployment of randomized smoothing, and we illustrate some of these via experiments on CIFAR-10 and MNIST, as well as on synthetic datasets.

Large language models (LLMs) have had a profound impact on numerous aspects of daily life including natural language processing, content generation, research methodologies and so on. However, one crucial issue concerning the inference results of large language models is security and privacy. In many scenarios, the results generated by LLMs could possibly leak many confidential or copyright information. A recent beautiful and breakthrough work [Vyas, Kakade and Barak 2023] focus on such privacy issue of the LLMs from theoretical perspective. It is well-known that computing the attention matrix is one of the major task during the LLMs computation. Thus, how to give a provable privately guarantees of computing the attention matrix is an important research direction. Previous work [Alman and Song 2023, Brand, Song and Zhou 2023] have proposed provable tight result for fast computation of attention without considering privacy concerns. One natural mathematical formulation to quantity the privacy in theoretical computer science graduate school textbook is differential privacy. Inspired by [Vyas, Kakade and Barak 2023], in this work, we provide a provable result for showing how to differentially private approximate the attention matrix. From technique perspective, our result replies on a pioneering work in the area of differential privacy by [Alabi, Kothari, Tankala, Venkat and Zhang 2022].

We study the problem of finding elements in the intersection of an arbitrary conic variety in $\mathbb{F}^n$ with a given linear subspace (where $\mathbb{F}$ can be the real or complex field). This problem captures a rich family of algorithmic problems under different choices of the variety. The special case of the variety consisting of rank-1 matrices already has strong connections to central problems in different areas like quantum information theory and tensor decompositions. This problem is known to be NP-hard in the worst case, even for the variety of rank-1 matrices. Surprisingly, despite these hardness results we develop an algorithm that solves this problem efficiently for "typical" subspaces. Here, the subspace $U \subseteq \mathbb{F}^n$ is chosen generically of a certain dimension, potentially with some generic elements of the variety contained in it. Our main result is a guarantee that our algorithm recovers all the elements of $U$ that lie in the variety, under some mild non-degeneracy assumptions on the variety. As corollaries, we obtain the following new results: $\bullet$ Polynomial time algorithms for several entangled subspaces problems in quantum entanglement, including determining r-entanglement, complete entanglement, and genuine entanglement of a subspace. While all of these problems are NP-hard in the worst case, our algorithm solves them in polynomial time for generic subspaces of dimension up to a constant multiple of the maximum possible. $\bullet$ Uniqueness results and polynomial time algorithmic guarantees for generic instances of a broad class of low-rank decomposition problems that go beyond tensor decompositions. Here, we recover a decomposition of the form $\sum_{i=1}^R v_i \otimes w_i$, where the $v_i$ are elements of the variety $X$. This implies new uniqueness results and genericity guarantees even in the special case of tensor decompositions.

In this paper, we focus our attention on the high-dimensional double sparse linear regression, that is, a combination of element-wise and group-wise sparsity.To address this problem, we propose an IHT-style (iterative hard thresholding) procedure that dynamically updates the threshold at each step. We establish the matching upper and lower bounds for parameter estimation, showing the optimality of our proposal in the minimax sense. Coupled with a novel sparse group information criterion, we develop a fully adaptive procedure to handle unknown group sparsity and noise levels.We show that our adaptive procedure achieves optimal statistical accuracy with fast convergence. Finally, we demonstrate the superiority of our method by comparing it with several state-of-the-art algorithms on both synthetic and real-world datasets.

We propose a new auto-regressive model for the statistical analysis of multivariate distributional time series. The data of interest consist of a collection of multiple series of probability measures supported over a bounded interval of the real line, and that are indexed by distinct time instants. The probability measures are modelled as random objects in the Wasserstein space. We establish the auto-regressive model in the tangent space at the Lebesgue measure by first centering all the raw measures so that their Fr\'echet means turn to be the Lebesgue measure. Using the theory of iterated random function systems, results on the existence, uniqueness and stationarity of the solution of such a model are provided. We also propose a consistent estimator for the model coefficient. In addition to the analysis of simulated data, the proposed model is illustrated with two real data sets made of observations from age distribution in different countries and bike sharing network in Paris. Finally, due to the positive and boundedness constraints that we impose on the model coefficients, the proposed estimator that is learned under these constraints, naturally has a sparse structure. The sparsity allows furthermore the application of the proposed model in learning a graph of temporal dependency from the multivariate distributional time series.

Federated edge learning (FEEL) is a popular distributed learning framework for privacy-preserving at the edge, in which densely distributed edge devices periodically exchange model-updates with the server to complete the global model training. Due to limited bandwidth and uncertain wireless environment, FEEL may impose heavy burden to the current communication system. In addition, under the common FEEL framework, the server needs to wait for the slowest device to complete the update uploading before starting the aggregation process, leading to the straggler issue that causes prolonged communication time. In this paper, we propose to accelerate FEEL from two aspects: i.e., 1) performing data compression on the edge devices and 2) setting a deadline on the edge server to exclude the straggler devices. However, undesired gradient compression errors and transmission outage are introduced by the aforementioned operations respectively, affecting the convergence of FEEL as well. In view of these practical issues, we formulate a training time minimization problem, with the compression ratio and deadline to be optimized. To this end, an asymptotically unbiased aggregation scheme is first proposed to ensure zero optimality gap after convergence, and the impact of compression error and transmission outage on the overall training time are quantified through convergence analysis. Then, the formulated problem is solved in an alternating manner, based on which, the novel joint compression and deadline optimization (JCDO) algorithm is derived. Numerical experiments for different use cases in FEEL including image classification and autonomous driving show that the proposed method is nearly 30X faster than the vanilla FedAVG algorithm, and outperforms the state-of-the-art schemes.

Prior research primarily examined differentially-private continual releases against data streams, where entries were immutable after insertion. However, most data is dynamic and housed in databases. Addressing this literature gap, this article presents a methodology for achieving differential privacy for continual releases in dynamic databases, where entries can be inserted, modified, and deleted. A dynamic database is represented as a changelog, allowing the application of differential privacy techniques for data streams to dynamic databases. To ensure differential privacy in continual releases, this article demonstrates the necessity of constraints on mutations in dynamic databases and proposes two common constraints. Additionally, it explores the differential privacy of two fundamental types of continual releases: Disjoint Continual Releases (DCR) and Sliding-window Continual Releases (SWCR). The article also highlights how DCR and SWCR can benefit from a hierarchical algorithm for better privacy budget utilization. Furthermore, it reveals that the changelog representation can be extended to dynamic entries, achieving local differential privacy for continual releases. Lastly, the article introduces a novel approach to implement continual release of randomized responses.

This paper is the first to attempt differentially private (DP) topological data analysis (TDA), producing near-optimal private persistence diagrams. We analyze the sensitivity of persistence diagrams in terms of the bottleneck distance, and we show that the commonly used \v{C}ech complex has sensitivity that does not decrease as the sample size $n$ increases. This makes it challenging for the persistence diagrams of \v{C}ech complexes to be privatized. As an alternative, we show that the persistence diagram obtained by the $L^1$-distance to measure (DTM) has sensitivity $O(1/n)$. Based on the sensitivity analysis, we propose using the exponential mechanism whose utility function is defined in terms of the bottleneck distance of the $L^1$-DTM persistence diagrams. We also derive upper and lower bounds of the accuracy of our privacy mechanism; the obtained bounds indicate that the privacy error of our mechanism is near-optimal. We demonstrate the performance of our privatized persistence diagrams through simulations as well as on a real dataset tracking human movement.

Obtaining high-quality data for collaborative training of machine learning models can be a challenging task due to A) the regulatory concerns and B) lack of incentive to participate. The first issue can be addressed through the use of privacy enhancing technologies (PET), one of the most frequently used one being differentially private (DP) training. The second challenge can be addressed by identifying which data points can be beneficial for model training and rewarding data owners for sharing this data. However, DP in deep learning typically adversely affects atypical (often informative) data samples, making it difficult to assess the usefulness of individual contributions. In this work we investigate how to leverage gradient information to identify training samples of interest in private training settings. We show that there exist techniques which are able to provide the clients with the tools for principled data selection even in strictest privacy settings.

北京阿比特科技有限公司