亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The change-plane Cox model is a popular tool for the subgroup analysis of the survival data. Despite the rich literature on this model, there has been limited investigation on the asymptotic properties of the estimators of the finite dimensional parameter. Particularly, the convergence rate, not to mention the asymptotic distribution, remains an unsolved problem for the general model where classification is based on multiple covariates. To bridge this theoretical gap, this study proposes a maximum smoothed partial likelihood estimator and establishes the following asymptotic properties. First, it shows that the convergence rate for the classification parameter can be arbitrarily close to n^-1 up to a logarithmic factor, depending on a choice of tuning parameter. Second, it establishes the asymptotic normality for the regression parameter.

相關內容

The asymptotic behaviour of Linear Spectral Statistics (LSS) of the smoothed periodogram estimator of the spectral coherency matrix of a complex Gaussian high-dimensional time series $(\y_n)_{n \in \mathbb{Z}}$ with independent components is studied under the asymptotic regime where the sample size $N$ converges towards $+\infty$ while the dimension $M$ of $\y$ and the smoothing span of the estimator grow to infinity at the same rate in such a way that $\frac{M}{N} \rightarrow 0$. It is established that, at each frequency, the estimated spectral coherency matrix is close from the sample covariance matrix of an independent identically $\mathcal{N}_{\mathbb{C}}(0,\I_M)$ distributed sequence, and that its empirical eigenvalue distribution converges towards the Marcenko-Pastur distribution. This allows to conclude that each LSS has a deterministic behaviour that can be evaluated explicitly. Using concentration inequalities, it is shown that the order of magnitude of the supremum over the frequencies of the deviation of each LSS from its deterministic approximation is of the order of $\frac{1}{M} + \frac{\sqrt{M}}{N}+ (\frac{M}{N})^{3}$ where $N$ is the sample size. Numerical simulations supports our results.

A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretical mean squared error of the estimator with a parametric estimation of the copula linking observations in the tails. Using simulations, we compare this semiparametric method with other approaches proposed in the literature, including the plateau-finding algorithm.

This paper investigates a channel estimator based on Gaussian mixture models (GMMs). We fit a GMM to given channel samples to obtain an analytic probability density function (PDF) which approximates the true channel PDF. Then, a conditional mean channel estimator corresponding to this approximating PDF is computed in closed form and used as an approximation of the optimal conditional mean estimator based on the true channel PDF. This optimal estimator cannot be calculated analytically because the true channel PDF is generally not available. To motivate the GMM-based estimator, we show that it converges to the optimal conditional mean estimator as the number of GMM components is increased. In numerical experiments, a reasonable number of GMM components already shows promising estimation results.

This paper deals with the Darcy-Forchheimer problem with two kinds of boundary conditions. We discretize the system by using the finite element methods and we propose two iterative schemes to solve the discrete problems. The well-posedness and the convergence of the corresponding iterative problems are then proven. Finally, several numerical experiments are performed to validate the proposed numerical schemes.

Reliable probability estimation is of crucial importance in many real-world applications where there is inherent uncertainty, such as weather forecasting, medical prognosis, or collision avoidance in autonomous vehicles. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the important difference that the objective is to estimate probabilities rather than predicting the specific outcome. The goal of this work is to investigate probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on classification problems where the probabilities are related to model uncertainty. In the case of problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. Finally, we also propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.

In this paper, we treat estimation and prediction problems where negative multinomial variables are observed and in particular consider unbalanced settings. First, the problem of estimating multiple negative multinomial parameter vectors under the standardized squared error loss is treated and a new empirical Bayes estimator which dominates the UMVU estimator under suitable conditions is derived. Second, we consider estimation of the joint predictive density of several multinomial tables under the Kullback-Leibler divergence and obtain a sufficient condition under which the Bayesian predictive density with respect to a hierarchical shrinkage prior dominates the Bayesian predictive density with respect to the Jeffreys prior. Third, our proposed Bayesian estimator and predictive density give risk improvements in simulations. Finally, the problem of estimating the joint predictive density of negative multinomial variables is discussed.

In this paper, we study sequential testing problems with \emph{overlapping} hypotheses. We first focus on the simple problem of assessing if the mean $\mu$ of a Gaussian distribution is smaller or larger than a fixed $\epsilon>0$; if $\mu\in(-\epsilon,\epsilon)$, both answers are considered to be correct. Then, we consider PAC-best arm identification in a bandit model: given $K$ probability distributions on $\mathbb{R}$ with means $\mu_1,\dots,\mu_K$, we derive the asymptotic complexity of identifying, with risk at most $\delta$, an index $I\in\{1,\dots,K\}$ such that $\mu_I\geq \max_i\mu_i -\epsilon$. We provide non-asymptotic bounds on the error of a parallel General Likelihood Ratio Test, which can also be used for more general testing problems. We further propose lower bound on the number of observation needed to identify a correct hypothesis. Those lower bounds rely on information-theoretic arguments, and specifically on two versions of a change of measure lemma (a high-level form, and a low-level form) whose relative merits are discussed.

In this study we present a non-overlapping Schwarz waveform relaxation (SWR) method applied to a one dimensional model problem representative of the coupling between the ocean and the atmosphere. This problem includes nonlinear interface conditions analogous to a quadratic friction law. We study the convergence of the corresponding SWR at a semi-discrete level for a linear friction and for a linearized quadratic friction at the interface. Using numerical experiments we show that the convergence properties in the linearized quadratic friction case are very close to the ones obtained with the full nonlinear problem for the range of parameter values of interest. We investigate the possibility to improve the convergence speed by adding a relaxation parameter at the interface.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

北京阿比特科技有限公司