亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of model selection in a high-dimensional sparse linear regression model under privacy constraints. We propose a differentially private best subset selection method with strong utility properties by adopting the well-known exponential mechanism for selecting the best model. We propose an efficient Metropolis-Hastings algorithm and establish that it enjoys polynomial mixing time to its stationary distribution. Furthermore, we also establish approximate differential privacy for the estimates of the mixed Metropolis-Hastings chain. Finally, we perform some illustrative experiments that show the strong utility of our algorithm.

相關內容

The reconstruction of images observed by subjects from fMRI data collected during visual stimuli has made strong progress in the past decade, thanks to the availability of extensive fMRI datasets and advancements in generative models for image generation. However, the application of visual reconstruction has remained limited. Reconstructing visual imagination presents a greater challenge, with potentially revolutionary applications ranging from aiding individuals with disabilities to verifying witness accounts in court. The primary hurdles in this field are the absence of data collection protocols for visual imagery and the lack of datasets on the subject. Traditionally, fMRI-to-image relies on data collected from subjects exposed to visual stimuli, which poses issues for generating visual imagery based on the difference of brain activity between visual stimulation and visual imagery. For the first time, we have compiled a substantial dataset (around 6h of scans) on visual imagery along with a proposed data collection protocol. We then train a modified version of an fMRI-to-image model and demonstrate the feasibility of reconstructing images from two modes of imagination: from memory and from pure imagination. The resulting pipeline we call Mind-to-Image marks a step towards creating a technology that allow direct reconstruction of visual imagery.

The generative process of Diffusion Models (DMs) has recently set state-of-the-art on many AI generation benchmarks. Though the generative process is traditionally understood as an "iterative denoiser", there is no universally accepted language to describe it. We introduce a novel perspective to describe DMs using the mathematical language of memory retrieval from the field of energy-based Associative Memories (AMs), making efforts to keep our presentation approachable to newcomers to both of these fields. Unifying these two fields provides insight that DMs can be seen as a particular kind of AM where Lyapunov stability guarantees are bypassed by intelligently engineering the dynamics (i.e., the noise and step size schedules) of the denoising process. Finally, we present a growing body of evidence that records DMs exhibiting empirical behavior we would expect from AMs, and conclude by discussing research opportunities that are revealed by understanding DMs as a form of energy-based memory.

We present the Linear Complexity Sequence Model (LCSM), a comprehensive solution that unites various sequence modeling techniques with linear complexity, including linear attention, state space model, long convolution, and linear RNN, within a single framework. The goal is to enhance comprehension of these models by analyzing the impact of each component from a cohesive and streamlined viewpoint. Specifically, we segment the modeling processes of these models into three distinct stages: Expand, Oscillation, and Shrink (EOS), with each model having its own specific settings. The Expand stage involves projecting the input signal onto a high-dimensional memory state. This is followed by recursive operations performed on the memory state in the Oscillation stage. Finally, the memory state is projected back to a low-dimensional space in the Shrink stage. We perform comprehensive experiments to analyze the impact of different stage settings on language modeling and retrieval tasks. Our results show that data-driven methods are crucial for the effectiveness of the three stages in language modeling, whereas hand-crafted methods yield better performance in retrieval tasks.

Large language models (LLMs) have shown impressive performance on downstream tasks by in-context learning (ICL), which heavily relies on the quality of demonstrations selected from a large set of annotated examples. Recent works claim that in-context learning is robust to noisy demonstrations in text classification. In this work, we show that, on text generation tasks, noisy annotations significantly hurt the performance of in-context learning. To circumvent the issue, we propose a simple and effective approach called Local Perplexity Ranking (LPR), which replaces the "noisy" candidates with their nearest neighbors that are more likely to be clean. Our method is motivated by analyzing the perplexity deviation caused by noisy labels and decomposing perplexity into inherent perplexity and matching perplexity. Our key idea behind LPR is thus to decouple the matching perplexity by performing the ranking among the neighbors in semantic space. Our approach can prevent the selected demonstrations from including mismatched input-label pairs while preserving the effectiveness of the original selection methods. Extensive experiments demonstrate the effectiveness of LPR, improving the EM score by up to 18.75 on common benchmarks with noisy annotations.

Simulation-based testing remains the main approach for validating Autonomous Driving Systems. We propose a rigorous test method based on breaking down scenarios into simple ones, taking into account the fact that autopilots make decisions according to traffic rules whose application depends on local knowledge and context. This leads us to consider the autopilot as a dynamic system receiving three different types of vistas as input, each characterizing a specific driving operation and a corresponding control policy. The test method for the considered vista types generates test cases for critical configurations that place the vehicle under test in critical situations characterized by the transition from cautious behavior to progression in order to clear an obstacle. The test cases thus generated are realistic, i.e., they determine the initial conditions from which safe control policies are possible, based on knowledge of the vehicle's dynamic characteristics. Constraint analysis identifies the most critical test cases, whose success implies the validity of less critical ones. Test coverage can therefore be greatly simplified. Critical test cases reveal major defects in Apollo, Autoware, and the Carla and LGSVL autopilots. Defects include accidents, software failures, and traffic rule violations that would be difficult to detect by random simulation, as the test cases lead to situations characterized by finely-tuned parameters of the vehicles involved, such as their relative position and speed. Our results corroborate real-life observations and confirm that autonomous driving systems still have a long way to go before offering acceptable safety guarantees.

The rapid advancements in Large Language Models (LLMs) have revolutionized natural language processing, with GPTs, customized versions of ChatGPT available on the GPT Store, emerging as a prominent technology for specific domains and tasks. To support academic research on GPTs, we introduce GPTZoo, a large-scale dataset comprising 730,420 GPT instances. Each instance includes rich metadata with 21 attributes describing its characteristics, as well as instructions, knowledge files, and third-party services utilized during its development. GPTZoo aims to provide researchers with a comprehensive and readily available resource to study the real-world applications, performance, and potential of GPTs. To facilitate efficient retrieval and analysis of GPTs, we also developed an automated command-line interface (CLI) that supports keyword-based searching of the dataset. To promote open research and innovation, the GPTZoo dataset will undergo continuous updates, and we are granting researchers public access to GPTZoo and its associated tools.

Artificial intelligence have contributed to advancements across various industries. However, the rapid growth of artificial intelligence technologies also raises concerns about their environmental impact, due to associated carbon footprints to train computational models. Fetal brain segmentation in medical imaging is challenging due to the small size of the fetal brain and the limited image quality of fast 2D sequences. Deep neural networks are a promising method to overcome this challenge. In this context, the construction of larger models requires extensive data and computing power, leading to high energy consumption. Our study aims to explore model architectures and compression techniques that promote energy efficiency by optimizing the trade-off between accuracy and energy consumption through various strategies such as lightweight network design, architecture search, and optimized distributed training tools. We have identified several effective strategies including optimization of data loading, modern optimizers, distributed training strategy implementation, and reduced floating point operations precision usage with light model architectures while tuning parameters according to available computer resources. Our findings demonstrate that these methods lead to satisfactory model performance with low energy consumption during deep neural network training for medical image segmentation.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司