亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern clinical and epidemiological studies widely employ wearables to record parallel streams of real-time data on human physiology and behavior. With recent advances in distributional data analysis, these high-frequency data are now often treated as distributional observations resulting in novel regression settings. Motivated by these modelling setups, we develop a distributional outcome regression via quantile functions (DORQF) that expands existing literature with three key contributions: i) handling both scalar and distributional predictors, ii) ensuring jointly monotone regression structure without enforcing monotonicity on individual functional regression coefficients, iii) providing statistical inference via asymptotic projection-based joint confidence bands and a statistical test of global significance to quantify uncertainty of the estimated functional regression coefficients. The method is motivated by and applied to Actiheart component of Baltimore Longitudinal Study of Aging that collected one week of minute-level heart rate (HR) and physical activity (PA) data on 781 older adults to gain deeper understanding of age-related changes in daily life heart rate reserve, defined as a distribution of daily HR, while accounting for daily distribution of physical activity, age, gender, and body composition. Intriguingly, the results provide novel insights in epidemiology of daily life heart rate reserve.

相關內容

Computational fluid dynamics (CFD) is an important tool for the simulation of the cardiovascular function and dysfunction. Due to the complexity of the anatomy, the transitional regime of blood flow in the heart, and the strong mutual influence between the flow and the physical processes involved in the heart function, the development of accurate and efficient CFD solvers for cardiovascular flows is still a challenging task. In this paper we present lifex-cfd: an open-source CFD solver for cardiovascular simulations based on the lifex finite element library, written in modern C++ and exploiting distributed memory parallelism. We model blood flow in both physiological and pathological conditions via the incompressible Navier-Stokes equations, accounting for moving cardiac valves, moving domains, and transition-to-turbulence regimes. In this paper, we provide an overview of the underlying mathematical formulation, numerical discretization, implementation details and instructions for use of lifex-cfd. The code has been verified through rigorous convergence analyses, and we show its almost ideal parallel speedup. We demonstrate the accuracy and reliability of the numerical methods implemented through a series of idealized and patient-specific vascular and cardiac simulations, in different physiological flow regimes. The lifex-cfd source code is available under the LGPLv3 license, to ensure its accessibility and transparency to the scientific community, and to facilitate collaboration and further developments.

Understanding the time-varying structure of complex temporal systems is one of the main challenges of modern time series analysis. In this paper, we show that every uniformly-positive-definite-in-covariance and sufficiently short-range dependent non-stationary and nonlinear time series can be well approximated globally by a white-noise-driven auto-regressive (AR) process of slowly diverging order. To our best knowledge, it is the first time such a structural approximation result is established for general classes of non-stationary time series. A high dimensional $\mathcal{L}^2$ test and an associated multiplier bootstrap procedure are proposed for the inference of the AR approximation coefficients. In particular, an adaptive stability test is proposed to check whether the AR approximation coefficients are time-varying, a frequently-encountered question for practitioners and researchers of time series. As an application, globally optimal short-term forecasting theory and methodology for a wide class of locally stationary time series are established via the method of sieves.

Noiseless compressive sensing is a protocol that enables undersampling and later recovery of a signal without loss of information. This compression is possible because the signal is usually sufficiently sparse in a given basis. Currently, the algorithm offering the best tradeoff between compression rate, robustness, and speed for compressive sensing is the LASSO (l1-norm bias) algorithm. However, many studies have pointed out the possibility that the implementation of lp-norms biases, with p smaller than one, could give better performance while sacrificing convexity. In this work, we focus specifically on the extreme case of the l0-based reconstruction, a task that is complicated by the discontinuity of the loss. In the first part of the paper, we describe via statistical physics methods, and in particular the replica method, how the solutions to this optimization problem are arranged in a clustered structure. We observe two distinct regimes: one at low compression rate where the signal can be recovered exactly, and one at high compression rate where the signal cannot be recovered accurately. In the second part, we present two message-passing algorithms based on our first results for the l0-norm optimization problem. The proposed algorithms are able to recover the signal at compression rates higher than the ones achieved by LASSO while being computationally efficient.

In many forecasting settings, there is a specific interest in predicting the sign of an outcome variable correctly in addition to its magnitude. For instance, when forecasting armed conflicts, positive and negative log-changes in monthly fatalities represent escalation and de-escalation, respectively, and have very different implications. In the ViEWS forecasting challenge, a prediction competition on state-based violence, a novel evaluation score called targeted absolute deviation with direction augmentation (TADDA) has therefore been suggested, which accounts for both for the sign and magnitude of log-changes. While it has a straightforward intuitive motivation, the empirical results of the challenge show that a no-change model always predicting a log-change of zero outperforms all submitted forecasting models under the TADDA score. We provide a statistical explanation for this phenomenon. Analyzing the properties of TADDA, we find that in order to achieve good scores, forecasters often have an incentive to predict no or only modest log-changes. In particular, there is often an incentive to report conservative point predictions considerably closer to zero than the forecaster's actual predictive median or mean. In an empirical application, we demonstrate that a no-change model can be improved upon by tailoring predictions to the particularities of the TADDA score. We conclude by outlining some alternative scoring concepts.

As the availability, size and complexity of data have increased in recent years, machine learning (ML) techniques have become popular for modeling. Predictions resulting from applying ML models are often used for inference, decision-making, and downstream applications. A crucial yet often overlooked aspect of ML is uncertainty quantification, which can significantly impact how predictions from models are used and interpreted. Extreme Gradient Boosting (XGBoost) is one of the most popular ML methods given its simple implementation, fast computation, and sequential learning, which make its predictions highly accurate compared to other methods. However, techniques for uncertainty determination in ML models such as XGBoost have not yet been universally agreed among its varying applications. We propose enhancements to XGBoost whereby a modified quantile regression is used as the objective function to estimate uncertainty (QXGBoost). Specifically, we included the Huber norm in the quantile regression model to construct a differentiable approximation to the quantile regression error function. This key step allows XGBoost, which uses a gradient-based optimization algorithm, to make probabilistic predictions efficiently. QXGBoost was applied to create 90\% prediction intervals for one simulated dataset and one real-world environmental dataset of measured traffic noise. Our proposed method had comparable or better performance than the uncertainty estimates generated for regular and quantile light gradient boosting. For both the simulated and traffic noise datasets, the overall performance of the prediction intervals from QXGBoost were better than other models based on coverage width-based criterion.

Estimating normals with globally consistent orientations for a raw point cloud has many downstream geometry processing applications. Despite tremendous efforts in the past decades, it remains challenging to deal with an unoriented point cloud with various imperfections, particularly in the presence of data sparsity coupled with nearby gaps or thin-walled structures. In this paper, we propose a smooth objective function to characterize the requirements of an acceptable winding-number field, which allows one to find the globally consistent normal orientations starting from a set of completely random normals. By taking the vertices of the Voronoi diagram of the point cloud as examination points, we consider the following three requirements: (1) the winding number is either 0 or 1, (2) the occurrences of 1 and the occurrences of 0 are balanced around the point cloud, and (3) the normals align with the outside Voronoi poles as much as possible. Extensive experimental results show that our method outperforms the existing approaches, especially in handling sparse and noisy point clouds, as well as shapes with complex geometry/topology.

When pandemics like COVID-19 spread around the world, the rapidly evolving situation compels officials and executives to take prompt decisions and adapt policies depending on the current state of the disease. In this context, it is crucial for policymakers to have always a firm grasp on what is the current state of the pandemic, and to envision how the number of infections and possible deaths is going to evolve over the next weeks. However, as in many other situations involving compulsory registration of sensitive data from multiple collectors, cases might be reported with errors, often with delays deferring an up-to-date view of the state of things. Errors in collecting new cases affect the overall mortality, resulting in excess deaths reported by official statistics only months later. In this paper, we provide tools for evaluating the quality of pandemic mortality data. We accomplish this through a Bayesian approach accounting for the excess mortality pandemics might bring with respect to the normal level of mortality in the population.

Selective inference is the problem of giving valid answers to statistical questions chosen in a data-driven manner. A standard solution to selective inference is simultaneous inference, which delivers valid answers to the set of all questions that could possibly have been asked. However, simultaneous inference can be unnecessarily conservative if this set includes many questions that were unlikely to be asked in the first place. We introduce a less conservative solution to selective inference that we call locally simultaneous inference, which only answers those questions that could plausibly have been asked in light of the observed data, all the while preserving rigorous type I error guarantees. For example, if the objective is to construct a confidence interval for the "winning" treatment effect in a clinical trial with multiple treatments, and it is obvious in hindsight that only one treatment had a chance to win, then our approach will return an interval that is nearly the same as the uncorrected, standard interval. Under mild conditions satisfied by common confidence intervals, locally simultaneous inference strictly dominates simultaneous inference, meaning it can never yield less statistical power but only more. Compared to conditional selective inference, which demands stronger guarantees, locally simultaneous inference is more easily applicable in nonparametric settings and is more numerically stable.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

北京阿比特科技有限公司