亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

LiDAR-generated point clouds are crucial for perceiving outdoor environments. The segmentation of point clouds is also essential for many applications. Previous research has focused on using self-attention and convolution (local attention) mechanisms individually in semantic segmentation architectures. However, there is limited work on combining the learned representations of these attention mechanisms to improve performance. Additionally, existing research that combines convolution with self-attention relies on global attention, which is not practical for processing large point clouds. To address these challenges, this study proposes a new architecture, pCTFusion, which combines kernel-based convolutions and self-attention mechanisms for better feature learning and capturing local and global dependencies in segmentation. The proposed architecture employs two types of self-attention mechanisms, local and global, based on the hierarchical positions of the encoder blocks. Furthermore, the existing loss functions do not consider the semantic and position-wise importance of the points, resulting in reduced accuracy, particularly at sharp class boundaries. To overcome this, the study models a novel attention-based loss function called Pointwise Geometric Anisotropy (PGA), which assigns weights based on the semantic distribution of points in a neighborhood. The proposed architecture is evaluated on SemanticKITTI outdoor dataset and showed a 5-7% improvement in performance compared to the state-of-the-art architectures. The results are particularly encouraging for minor classes, often misclassified due to class imbalance, lack of space, and neighbor-aware feature encoding. These developed methods can be leveraged for the segmentation of complex datasets and can drive real-world applications of LiDAR point cloud.

相關內容

Deepfake has taken the world by storm, triggering a trust crisis. Current deepfake detection methods are typically inadequate in generalizability, with a tendency to overfit to image contents such as the background, which are frequently occurring but relatively unimportant in the training dataset. Furthermore, current methods heavily rely on a few dominant forgery regions and may ignore other equally important regions, leading to inadequate uncovering of forgery cues. In this paper, we strive to address these shortcomings from three aspects: (1) We propose an innovative two-stream network that effectively enlarges the potential regions from which the model extracts forgery evidence. (2) We devise three functional modules to handle the multi-stream and multi-scale features in a collaborative learning scheme. (3) Confronted with the challenge of obtaining forgery annotations, we propose a Semi-supervised Patch Similarity Learning strategy to estimate patch-level forged location annotations. Empirically, our method demonstrates significantly improved robustness and generalizability, outperforming previous methods on six benchmarks, and improving the frame-level AUC on Deepfake Detection Challenge preview dataset from 0.797 to 0.835 and video-level AUC on CelebDF$\_$v1 dataset from 0.811 to 0.847. Our implementation is available at //github.com/sccsok/Locate-and-Verify.

3D human reconstruction from RGB images achieves decent results in good weather conditions but degrades dramatically in rough weather. Complementary, mmWave radars have been employed to reconstruct 3D human joints and meshes in rough weather. However, combining RGB and mmWave signals for robust all-weather 3D human reconstruction is still an open challenge, given the sparse nature of mmWave and the vulnerability of RGB images. In this paper, we present ImmFusion, the first mmWave-RGB fusion solution to reconstruct 3D human bodies in all weather conditions robustly. Specifically, our ImmFusion consists of image and point backbones for token feature extraction and a Transformer module for token fusion. The image and point backbones refine global and local features from original data, and the Fusion Transformer Module aims for effective information fusion of two modalities by dynamically selecting informative tokens. Extensive experiments on a large-scale dataset, mmBody, captured in various environments demonstrate that ImmFusion can efficiently utilize the information of two modalities to achieve a robust 3D human body reconstruction in all weather conditions. In addition, our method's accuracy is significantly superior to that of state-of-the-art Transformer-based LiDAR-camera fusion methods.

3D point clouds are discrete samples of continuous surfaces which can be used for various applications. However, the lack of true connectivity information, i.e., edge information, makes point cloud recognition challenging. Recent edge-aware methods incorporate edge modeling into network designs to better describe local structures. Although these methods show that incorporating edge information is beneficial, how edge information helps remains unclear, making it difficult for users to analyze its usefulness. To shed light on this issue, in this study, we propose a new algorithm called Diffusion Unit (DU) that handles edge information in a principled and interpretable manner while providing decent improvement. First, we theoretically show that DU learns to perform task-beneficial edge enhancement and suppression. Second, we experimentally observe and verify the edge enhancement and suppression behavior. Third, we empirically demonstrate that this behavior contributes to performance improvement. Extensive experiments and analyses performed on challenging benchmarks verify the effectiveness of DU. Specifically, our method achieves state-of-the-art performance in object part segmentation using ShapeNet part and scene segmentation using S3DIS. Our source code is available at //github.com/martianxiu/DiffusionUnit.

Ocean renewable energy, particularly wave energy, has emerged as a pivotal component for diversifying the global energy portfolio, reducing dependence on fossil fuels, and mitigating climate change impacts. This study delves into the optimization of power take-off (PTO) parameters and the site selection process for an offshore oscillating surge wave energy converter (OSWEC). However, the intrinsic dynamics of these interactions, coupled with the multi-modal nature of the optimization landscape, make this a daunting challenge. Addressing this, we introduce the novel Hill Climb - Explorative Gray Wolf Optimizer (HC-EGWO). This new methodology blends a local search method with a global optimizer, incorporating dynamic control over exploration and exploitation rates. This balance paves the way for an enhanced exploration of the solution space, ensuring the identification of superior-quality solutions. Further anchoring our approach, a feasibility landscape analysis based on linear water wave theory assumptions and the flap's maximum angular motion is conducted. This ensures the optimized OSWEC consistently operates within safety and efficiency parameters. Our findings hold significant promise for the development of more streamlined OSWEC power take-off systems. They provide insights for selecting the prime offshore site, optimizing power output, and bolstering the overall adoption of ocean renewable energy sources. Impressively, by employing the HC-EGWO method, we achieved an upswing of up to 3.31% in power output compared to other methods. This substantial increment underscores the efficacy of our proposed optimization approach. Conclusively, the outcomes offer invaluable knowledge for deploying OSWECs in the South Caspian Sea, where unique environmental conditions intersect with considerable energy potential.

Annotating 3D LiDAR point clouds for perception tasks including 3D object detection and LiDAR semantic segmentation is notoriously time-and-energy-consuming. To alleviate the burden from labeling, it is promising to perform large-scale pre-training and fine-tune the pre-trained backbone on different downstream datasets as well as tasks. In this paper, we propose SPOT, namely Scalable Pre-training via Occupancy prediction for learning Transferable 3D representations, and demonstrate its effectiveness on various public datasets with different downstream tasks under the label-efficiency setting. Our contributions are threefold: (1) Occupancy prediction is shown to be promising for learning general representations, which is demonstrated by extensive experiments on plenty of datasets and tasks. (2) SPOT uses beam re-sampling technique for point cloud augmentation and applies class-balancing strategies to overcome the domain gap brought by various LiDAR sensors and annotation strategies in different datasets. (3) Scalable pre-training is observed, that is, the downstream performance across all the experiments gets better with more pre-training data. We believe that our findings can facilitate understanding of LiDAR point clouds and pave the way for future exploration in LiDAR pre-training. Codes and models will be released.

Unmanned aerial vehicles (UAVs) are capable of surveying expansive areas, but their operational range is constrained by limited battery capacity. The deployment of mobile recharging stations using unmanned ground vehicles (UGVs) significantly extends the endurance and effectiveness of UAVs. However, optimizing the routes of both UAVs and UGVs, known as the UAV-UGV cooperative routing problem, poses substantial challenges, particularly with respect to the selection of recharging locations. Here in this paper, we leverage reinforcement learning (RL) for the purpose of identifying optimal recharging locations while employing constraint programming to determine cooperative routes for the UAV and UGV. Our proposed framework is then benchmarked against a baseline solution that employs Genetic Algorithms (GA) to select rendezvous points. Our findings reveal that RL surpasses GA in terms of reducing overall mission time, minimizing UAV-UGV idle time, and mitigating energy consumption for both the UAV and UGV. These results underscore the efficacy of incorporating heuristics to assist RL, a method we refer to as heuristics-assisted RL, in generating high-quality solutions for intricate routing problems.

By utilizing global navigation satellite system (GNSS) position and velocity measurements, the fusion between the GNSS and the inertial navigation system provides accurate and robust navigation information. When considering land vehicles,like autonomous ground vehicles,off-road vehicles or mobile robots,a GNSS-based heading angle measurement can be obtained and used in parallel to the position measurement to bound the heading angle drift. Yet, at low vehicle speeds (less than 2m/s) such a model-based heading measurement fails to provide satisfactory performance. This paper proposes GHNet, a deep-learning framework capable of accurately regressing the heading angle for vehicles operating at low speeds. We demonstrate that GHNet outperforms the current model-based approach for simulation and experimental datasets.

In recent years, the transition to cloud-based platforms in the IT sector has emphasized the significance of cloud incident root cause analysis to ensure service reliability and maintain customer trust. Central to this process is the efficient determination of root causes, a task made challenging due to the complex nature of contemporary cloud infrastructures. Despite the proliferation of AI-driven tools for root cause identification, their applicability remains limited by the inconsistent quality of their outputs. This paper introduces a method for enhancing confidence estimation in root cause analysis tools by prompting retrieval-augmented large language models (LLMs). This approach operates in two phases. Initially, the model evaluates its confidence based on historical incident data, considering its assessment of the evidence strength. Subsequently, the model reviews the root cause generated by the predictor. An optimization step then combines these evaluations to determine the final confidence assignment. Experimental results illustrate that our method enables the model to articulate its confidence effectively, providing a more calibrated score. We address research questions evaluating the ability of our method to produce calibrated confidence scores using LLMs, the impact of domain-specific retrieved examples on confidence estimates, and its potential generalizability across various root cause analysis models. Through this, we aim to bridge the confidence estimation gap, aiding on-call engineers in decision-making and bolstering the efficiency of cloud incident management.

Laser-scanned point clouds of forests make it possible to extract valuable information for forest management. To consider single trees, a forest point cloud needs to be segmented into individual tree point clouds. Existing segmentation methods are usually based on hand-crafted algorithms, such as identifying trunks and growing trees from them, and face difficulties in dense forests with overlapping tree crowns. In this study, we propose \mbox{TreeLearn}, a deep learning-based approach for semantic and instance segmentation of forest point clouds. Unlike previous methods, TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms. Additionally, we introduce a new manually segmented benchmark forest dataset containing 156 full trees, and 79 partial trees, that have been cleanly segmented by hand. This enables the evaluation of instance segmentation performance going beyond just evaluating the detection of individual trees. We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software. An evaluation on the benchmark dataset shows that TreeLearn performs equally well or better than the algorithm used to generate its training data. Furthermore, the method's performance can be vastly improved by fine-tuning on the cleanly labeled benchmark dataset. The TreeLearn code is availabe from //github.com/ecker-lab/TreeLearn. The data as well as trained models can be found at //doi.org/10.25625/VPMPID.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

北京阿比特科技有限公司