The Flexible Job Shop Scheduling Problem (FJSSP) has been extensively studied in the literature, and multiple approaches have been proposed within the heuristic, exact, and metaheuristic methods. However, the industry's demand to be able to respond in real-time to disruptive events has generated the necessity to be able to generate new schedules within a few seconds. Among these methods, under this constraint, only dispatching rules (DRs) are capable of generating schedules, even though their quality can be improved. To improve the results, recent methods have been proposed for modeling the FJSSP as a Markov Decision Process (MDP) and employing reinforcement learning to create a policy that generates an optimal solution assigning operations to machines. Nonetheless, there is still room for improvement, particularly in the larger FJSSP instances which are common in real-world scenarios. Therefore, the objective of this paper is to propose a method capable of robustly solving large instances of the FJSSP. To achieve this, we propose a novel way of modeling the FJSSP as an MDP using graph neural networks. We also present two methods to make inference more robust: generating a diverse set of scheduling policies that can be parallelized and limiting them using DRs. We have tested our approach on synthetically generated instances and various public benchmarks and found that our approach outperforms dispatching rules and achieves better results than three other recent deep reinforcement learning methods on larger FJSSP instances.
We consider the problem of chance constrained optimization where it is sought to optimize a function and satisfy constraints, both of which are affected by uncertainties. The real world declinations of this problem are particularly challenging because of their inherent computational cost. To tackle such problems, we propose a new Bayesian optimization method. It applies to the situation where the uncertainty comes from some of the inputs, so that it becomes possible to define an acquisition criterion in the joint controlled-uncontrolled input space. The main contribution of this work is an acquisition criterion that accounts for both the average improvement in objective function and the constraint reliability. The criterion is derived following the Stepwise Uncertainty Reduction logic and its maximization provides both optimal controlled and uncontrolled parameters. Analytical expressions are given to efficiently calculate the criterion. Numerical studies on test functions are presented. It is found through experimental comparisons with alternative sampling criteria that the adequation between the sampling criterion and the problem contributes to the efficiency of the overall optimization. As a side result, an expression for the variance of the improvement is given.
In several branches of the social sciences and humanities, surveys based on standardized questionnaires are a prominent research tool. While there are a variety of ways to analyze the data, some standard procedures have become established. When those surveys want to analyze differences in the answer patterns of different groups (e.g., countries, gender, age, ...), these procedures can only be carried out in a meaningful way if there is measurement invariance, i.e., the measured construct has psychometric equivalence across groups. As recently raised as an open problem by Sauerwein et al. (2021), new evaluation methods that work in the absence of measurement invariance are needed. This paper promotes an unsupervised learning-based approach to such research data by proposing a procedure that works in three phases: data preparation, clustering of questionnaires, and measuring similarity based on the obtained clustering and the properties of each group. We generate synthetic data in three data sets, which allows us to compare our approach with the PCA approach under measurement invariance and under violated measurement invariance. As a main result, we obtain that the approach provides a natural comparison between groups and a natural description of the response patterns of the groups. Moreover, it can be safely applied to a wide variety of data sets, even in the absence of measurement invariance. Finally, this approach allows us to translate (violations of) measurement invariance into a meaningful measure of similarity.
Curb detection is essential for environmental awareness in Automated Driving (AD), as it typically limits drivable and non-drivable areas. Annotated data are necessary for developing and validating an AD function. However, the number of public datasets with annotated point cloud curbs is scarce. This paper presents a method for detecting 3D curbs in a sequence of point clouds captured from a LiDAR sensor, which consists of two main steps. First, our approach detects the curbs at each scan using a segmentation deep neural network. Then, a sequence-level processing step estimates the 3D curbs in the reconstructed point cloud using the odometry of the vehicle. From these 3D points of the curb, we obtain polylines structured following ASAM OpenLABEL standard. These detections can be used as pre-annotations in labelling pipelines to efficiently generate curb-related ground truth data. We validate our approach through an experiment in which different human annotators were required to annotate curbs in a group of LiDAR-based sequences with and without our automatically generated pre-annotations. The results show that the manual annotation time is reduced by 50.99% thanks to our detections, keeping the data quality level.
Large Language Models (LLMs) have emerged as powerful generative Artificial Intelligence solutions which can be applied to several fields and areas of work. This paper presents results and reflection of an experiment done to use the model GPT 3.5-Turbo to emulate some aspects of an inductive Thematic Analysis. Previous research on this subject has largely worked on conducting deductive analysis. Thematic Analysis is a qualitative method for analysis commonly used in social sciences and it is based on interpretations made by the human analyst(s) and the identification of explicit and latent meanings in qualitative data. Attempting an analysis based on human interpretation with an LLM clearly is a provocation but also a way to learn something about how these systems can or cannot be used in qualitative research. The paper presents the motivations for attempting this emulation, it reflects on how the six steps to a Thematic Analysis proposed by Braun and Clarke can at least partially be reproduced with the LLM and it also reflects on what are the outputs produced by the model. The paper used two existing datasets of open access semi-structured interviews, previously analysed with Thematic Analysis by other researchers. It used the previously produced analysis (and the related themes) to compare with the results produced by the LLM. The results show that the model can infer at least partially some of the main Themes. The objective of the paper is not to replace human analysts in qualitative analysis but to learn if some elements of LLM data manipulation can to an extent be of support for qualitative research.
We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.
Recurrent COVID-19 outbreaks have placed immense strain on the hospital system in Quebec. We develop a Bayesian three-state coupled Markov switching model to analyze COVID-19 outbreaks across Quebec based on admissions in the 30 largest hospitals. Within each catchment area, we assume the existence of three states for the disease: absence, a new state meant to account for many zeroes in some of the smaller areas, endemic and outbreak. Then we assume the disease switches between the three states in each area through a series of coupled nonhomogeneous hidden Markov chains. Unlike previous approaches, the transition probabilities may depend on covariates and the occurrence of outbreaks in neighboring areas, to account for geographical outbreak spread. Additionally, to prevent rapid switching between endemic and outbreak periods we introduce clone states into the model which enforce minimum endemic and outbreak durations. We make some interesting findings, such as that mobility in retail and recreation venues had a positive association with the development and persistence of new COVID-19 outbreaks in Quebec. Based on model comparison our contributions show promise in improving state estimation retrospectively and in real-time, especially when there are smaller areas and highly spatially synchronized outbreaks. Furthermore, our approach offers new and interesting epidemiological interpretations, such as being able to estimate the effect of covariates on disease extinction.
A recently released Temporal Graph Benchmark is analyzed in the context of Dynamic Link Property Prediction. We outline our observations and propose a trivial optimization-free baseline of "recently popular nodes" outperforming other methods on medium and large-size datasets in the Temporal Graph Benchmark. We propose two measures based on Wasserstein distance which can quantify the strength of short-term and long-term global dynamics of datasets. By analyzing our unexpectedly strong baseline, we show how standard negative sampling evaluation can be unsuitable for datasets with strong temporal dynamics. We also show how simple negative-sampling can lead to model degeneration during training, resulting in impossible to rank, fully saturated predictions of temporal graph networks. We propose improved negative sampling schemes for both training and evaluation and prove their usefulness. We conduct a comparison with a model trained non-contrastively without negative sampling. Our results provide a challenging baseline and indicate that temporal graph network architectures need deep rethinking for usage in problems with significant global dynamics, such as social media, cryptocurrency markets or e-commerce. We open-source the code for baselines, measures and proposed negative sampling schemes.
Public policy also represent a special subdiscipline within political science, within political science. They are given increasing importance and importance in the context of scientific research and scientific approaches. Public policy as a discipline of political science have their own special subject and method of research. A particularly important aspect of the scientific approach to public policy is the aspect of applying research methods as one of the stages and phases of designing scientific research. In this sense, the goal of this research is to present the application of scientific research methods in the field of public policy. Those methods are based on scientific achievements developed within the framework of modern methodology of social sciences. Scientific research methods represent an important functional part of the research project as a model of the scientific research system, predominantly of an empirical character, which is applicable to all types of research. This is precisely what imposes the need to develop a project as a prerequisite for applying scientific methods and conducting scientific research, and therefore for a more complete understanding of public policy. The conclusions that will be reached point to the fact that scientific research of public policy can not be carried out without the creation of a scientific research project as a complex scientific and operational document and the application of appropriate methods and techniques developed within the framework of scientific achievements of modern social science methodology.
As a surrogate for computationally intensive meso-scale simulation of woven composites, this article presents Recurrent Neural Network (RNN) models. Leveraging the power of transfer learning, the initialization challenges and sparse data issues inherent in cyclic shear strain loads are addressed in the RNN models. A mean-field model generates a comprehensive data set representing elasto-plastic behavior. In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task. Incorporating sub-scale properties enhances RNN versatility. In order to achieve accurate predictions, the model uses a grid search method to tune network architecture and hyper-parameter configurations. The results of this study demonstrate that transfer learning can be used to effectively adapt the RNN to varying strain conditions, which establishes its potential as a useful tool for modeling path-dependent responses in woven composites.
Emails are used every day for communication, and many countries and organisations mostly use email for official communications. It is highly valued and recognised for confidential conversations and transactions in day-to-day business. The Often use of this channel and the quality of information it carries attracted cyber attackers to it. There are many existing techniques to mitigate attacks on email, however, the systems are more focused on email content and behaviour and not securing entrances to email boxes, composition, and settings. This work intends to protect users' email composition and settings to prevent attackers from using an account when it gets hacked or hijacked and stop them from setting forwarding on the victim's email account to a different account which automatically stops the user from receiving emails. A secure code is applied to the composition send button to curtail insider impersonation attack. Also, to secure open applications on public and private devices.