亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel Monte-Carlo based ab-initio algorithm for directly computing the statistics for quantities of interest in an immiscible two-phase compressible flow. Our algorithm samples the underlying probability space and evolves these samples with a sharp interface front-tracking scheme. Consequently, statistical information is generated without resorting to any closure assumptions and information about the underlying microstructure is implicitly included. The proposed algorithm is tested on a suite of numerical experiments and we observe that the ab-initio procedure can simulate a variety of flow regimes robustly and converges with respect of refinement of number of samples as well as number of bubbles per volume. The results are also compared with a state-of-the-art discrete equation method to reveal the inherent limitations of existing macroscopic models.

相關內容

We study the approximation of integrals $\int_D f(\boldsymbol{x}^\top A) \mathrm{d} \mu(\boldsymbol{x})$, where $A$ is a matrix, by quasi-Monte Carlo (QMC) rules $N^{-1} \sum_{k=0}^{N-1} f(\boldsymbol{x}_k^\top A)$. We are interested in cases where the main cost arises from calculating the products $\boldsymbol{x}_k^\top A$. We design QMC rules for which the computation of $\boldsymbol{x}_k^\top A$, $k = 0, 1, \ldots, N-1$, can be done fast, and for which the error of the QMC rule is similar to the standard QMC error. We do not require that $A$ has any particular structure. For instance, this approach can be used when approximating the expected value of a function with a multivariate normal random variable with a given covariance matrix, or when approximating the expected value of the solution of a PDE with random coefficients. The speed-up of the computation time is sometimes better and sometimes worse than the fast QMC matrix-vector product from [Dick, Kuo, Le Gia, and Schwab, Fast QMC Matrix-Vector Multiplication, SIAM J. Sci. Comput. 37 (2015)]. As in that paper, our approach applies to (polynomial) lattice point sets, but also to digital nets (we are currently not aware of any approach which allows one to apply the fast method from the aforementioned paper of Dick, Kuo, Le Gia, and Schwab to digital nets). Our method does not use FFT, instead we use repeated values in the quadrature points to derive a reduction in the computation time. This arises from the reduced CBC construction of lattice rules and polynomial lattice rules. The reduced CBC construction has been shown to reduce the computation time for the CBC construction. Here we show that it can also be used to also reduce the computation time of the QMC rule.

A nonlinear sea-ice problem is considered in a least-squares finite element setting. The corresponding variational formulation approximating simultaneously the stress tensor and the velocity is analysed. In particular, the least-squares functional is coercive and continuous in an appropriate solution space and this proves the well-posedness of the problem. As the method does not require a compatibility condition between the finite element space, the formulation allows the use of piecewise polynomial spaces of the same approximation order for both the stress and the velocity approximations. A Newton-type iterative method is used to linearize the problem and numerical tests are provided to illustrate the theory.

Motion planning seeks a collision-free path in a configuration space (C-space), representing all possible robot configurations in the environment. As it is challenging to construct a C-space explicitly for a high-dimensional robot, we generally build a graph structure called a roadmap, a discrete approximation of a complex continuous C-space, to reason about connectivity. Checking collision-free connectivity in the roadmap requires expensive edge-evaluation computations, and thus, reducing the number of evaluations has become a significant research objective. However, in practice, we often face infeasible problems: those in which there is no collision-free path in the roadmap between the start and the goal locations. Existing studies often overlook the possibility of infeasibility, becoming highly inefficient by performing many edge evaluations. In this work, we address this oversight in scenarios where a prior roadmap is available; that is, the edges of the roadmap contain the probability of being a collision-free edge learned from past experience. To this end, we propose an algorithm called iterative path and cut finding (IPC) that iteratively searches for a path and a cut in a prior roadmap to detect infeasibility while reducing expensive edge evaluations as much as possible. We further improve the efficiency of IPC by introducing a second algorithm, iterative decomposition and path and cut finding (IDPC), that leverages the fact that cut-finding algorithms partition the roadmap into smaller subgraphs. We analyze the theoretical properties of IPC and IDPC, such as completeness and computational complexity, and evaluate their performance in terms of completion time and the number of edge evaluations in large-scale simulations.

This paper presents a high-order discontinuous Galerkin finite element method to solve the barotropic version of the conservative symmetric hyperbolic and thermodynamically compatible (SHTC) model of compressible two-phase flow, introduced by Romenski et al., in multiple space dimensions. In the absence of algebraic source terms, the model is endowed with a curl constraint on the relative velocity field. In this paper, the hyperbolicity of the system is studied for the first time in the multidimensional case, showing that the original model is only weakly hyperbolic in multiple space dimensions. To restore strong hyperbolicity, two different methodologies are used: i) the explicit symmetrization of the system, which can be achieved by adding terms that contain linear combinations of the curl involution, similar to the Godunov-Powell terms in the MHD equations; ii) the use of the hyperbolic generalized Lagrangian multiplier (GLM) curl-cleaning approach forwarded. The PDE system is solved using a high-order ADER discontinuous Galerkin method with a posteriori sub-cell finite volume limiter to deal with shock waves and the steep gradients in the volume fraction commonly appearing in the solutions of this type of model. To illustrate the performance of the method, several different test cases and benchmark problems have been run, showing the high-order of the scheme and the good agreement when compared to reference solutions computed with other well-known methods.

Most reinforcement learning algorithms seek a single optimal strategy that solves a given task. However, it can often be valuable to learn a diverse set of solutions, for instance, to make an agent's interaction with users more engaging, or improve the robustness of a policy to an unexpected perturbance. We propose Diversity-Guided Policy Optimization (DGPO), an on-policy algorithm that discovers multiple strategies for solving a given task. Unlike prior work, it achieves this with a shared policy network trained over a single run. Specifically, we design an intrinsic reward based on an information-theoretic diversity objective. Our final objective alternately constraints on the diversity of the strategies and on the extrinsic reward. We solve the constrained optimization problem by casting it as a probabilistic inference task and use policy iteration to maximize the derived lower bound. Experimental results show that our method efficiently discovers diverse strategies in a wide variety of reinforcement learning tasks. Compared to baseline methods, DGPO achieves comparable rewards, while discovering more diverse strategies, and often with better sample efficiency.

Time-dependent protocols that perform irreversible logical operations, such as memory erasure, cost work and produce heat, placing bounds on the efficiency of computers. Here we use a prototypical computer model of a physical memory to show that it is possible to learn feedback-control protocols to do fast memory erasure without input of work or production of heat. These protocols, which are enacted by a neural-network "demon", do not violate the second law of thermodynamics because the demon generates more heat than the memory absorbs. The result is a form of nonlocal heat exchange in which one computation is rendered energetically favorable while a compensating one produces heat elsewhere, a tactic that could be used to rationally design the flow of energy within a computer.

Oceanographers are interested in predicting ocean currents and identifying divergences in a current vector field based on sparse observations of buoy velocities. Since we expect current velocity to be a continuous but highly non-linear function of spatial location, Gaussian processes (GPs) offer an attractive model. But we show that applying a GP with a standard stationary kernel directly to buoy data can struggle at both current prediction and divergence identification -- due to some physically unrealistic prior assumptions. To better reflect known physical properties of currents, we propose to instead put a standard stationary kernel on the divergence and curl-free components of a vector field obtained through a Helmholtz decomposition. We show that, because this decomposition relates to the original vector field just via mixed partial derivatives, we can still perform inference given the original data with only a small constant multiple of additional computational expense. We illustrate the benefits of our method on synthetic and real ocean data.

Link prediction problem has increasingly become prominent in many domains such as social network analyses, bioinformatics experiments, transportation networks, criminal investigations and so forth. A variety of techniques has been developed for link prediction problem, categorized into 1) similarity based approaches which study a set of features to extract similar nodes; 2) learning based approaches which extract patterns from the input data; 3) probabilistic statistical approaches which optimize a set of parameters to establish a model which can best compute formation probability. However, existing literatures lack approaches which utilize strength of each approach by integrating them to achieve a much more productive one. To tackle the link prediction problem, we propose an approach based on the combination of first and second group methods; the existing studied works use just one of these categories. Our two-phase developed method firstly determines new features related to the position and dynamic behavior of nodes, which enforce the approach more efficiency compared to approaches using mere measures. Then, a subspace clustering algorithm is applied to group social objects based on the computed similarity measures which differentiate the strength of clusters; basically, the usage of local and global indices and the clustering information plays an imperative role in our link prediction process. Some extensive experiments held on real datasets including Facebook, Brightkite and HepTh indicate good performances of our proposal method. Besides, we have experimentally verified our approach with some previous techniques in the area to prove the supremacy of ours.

Value decomposition methods have gained popularity in the field of cooperative multi-agent reinforcement learning. However, almost all existing methods follow the principle of Individual Global Max (IGM) or its variants, which limits their problem-solving capabilities. To address this, we propose a dual self-awareness value decomposition framework, inspired by the notion of dual self-awareness in psychology, that entirely rejects the IGM premise. Each agent consists of an ego policy for action selection and an alter ego value function to solve the credit assignment problem. The value function factorization can ignore the IGM assumption by utilizing an explicit search procedure. On the basis of the above, we also suggest a novel anti-ego exploration mechanism to avoid the algorithm becoming stuck in a local optimum. As the first fully IGM-free value decomposition method, our proposed framework achieves desirable performance in various cooperative tasks.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

北京阿比特科技有限公司