亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series. We introduce a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of a locally stationary functional time series. Subsequently, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions. We also establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss the prediction of locally stationary functional time series and methods for testing the equality of time-varying mean functions in two functional samples.

相關內容

Friedman's chi-square test is a non-parametric statistical test for $r\geq2$ treatments across $n\ge1$ trials to assess the null hypothesis that there is no treatment effect. We use Stein's method with an exchangeable pair coupling to derive an explicit bound on the distance between the distribution of Friedman's statistic and its limiting chi-square distribution, measured using smooth test functions. Our bound is of the optimal order $n^{-1}$, and also has an optimal dependence on the parameter $r$, in that the bound tends to zero if and only if $r/n\rightarrow0$. From this bound, we deduce a Kolmogorov distance bound that decays to zero under the weaker condition $r^{1/2}/n\rightarrow0$.

We study the discretization of a linear evolution partial differential equation when its Green function is known. We provide error estimates both for the spatial approximation and for the time stepping approximation. We show that, in fact, an approximation of the Green function is almost as good as the Green function itself. For suitable time-dependent parabolic equations, we explain how to obtain good, explicit approximations of the Green function using the Dyson-Taylor commutator method (DTCM) that we developed in J. Math. Phys. (2010). This approximation for short time, when combined with a bootstrap argument, gives an approximate solution on any fixed time interval within any prescribed tolerance.

We present an analytical framework for the channel estimation and the data detection in massive multiple-input multiple-output uplink systems with 1-bit analog-to-digital converters (ADCs) and i.i.d. Rayleigh fading. First, we provide closed-form expressions of the mean squared error (MSE) of the channel estimation considering the state-of-the-art linear minimum MSE estimator and the class of scaled least-squares estimators. For the data detection, we provide closed-form expressions of the expected value and the variance of the estimated symbols when maximum ratio combining is adopted, which can be exploited to efficiently implement minimum distance detection and, potentially, to design the set of transmit symbols. Our analytical findings explicitly depend on key system parameters such as the signal-to-noise ratio (SNR), the number of user equipments, and the pilot length, thus enabling a precise characterization of the performance of the channel estimation and the data detection with 1-bit ADCs. The proposed analysis highlights a fundamental SNR trade-off, according to which operating at the right noise level significantly enhances the system performance.

We revisit the divide-and-conquer sequential Monte Carlo (DaC-SMC) algorithm and firmly establish it as a well-founded method by showing that it possesses the same basic properties as conventional sequential Monte Carlo (SMC) algorithms do. In particular, we derive pertinent laws of large numbers, $L^p$ inequalities, and central limit theorems; and we characterize the bias in the normalized estimates produced by the algorithm and argue the absence thereof in the unnormalized ones. We further consider its practical implementation and several interesting variants; obtain expressions for its globally and locally optimal intermediate targets, auxiliary measures, and proposal kernels; and show that, in comparable conditions, DaC-SMC proves more statistically efficient than its direct SMC analogue. We close the paper with a discussion of our results, open questions, and future research directions.

Modeling univariate block maxima by the generalized extreme value distribution constitutes one of the most widely applied approaches in extreme value statistics. It has recently been found that, for an underlying stationary time series, respective estimators may be improved by calculating block maxima in an overlapping way. A proof of concept is provided that the latter finding also holds in situations that involve certain piecewise stationarities. A weak convergence result for an empirical process of central interest is provided, and, as a case-in-point, further details are worked out explicitly for the probability weighted moment estimator. Irrespective of the serial dependence, the estimation variance is shown to be smaller for the new estimator, while the bias was found to be the same or vary comparably little in extensive simulation experiments. The results are illustrated by Monte Carlo simulation experiments and are applied to a common situation involving temperature extremes in a changing climate.

We consider the problem of approximating the arboricity of a graph $G= (V,E)$, which we denote by $\mathsf{arb}(G)$, in sublinear time, where the arboricity of a graph is the minimal number of forests required to cover its edges. An algorithm for this problem may perform degree and neighbor queries, and is allowed a small error probability. We design an algorithm that outputs an estimate $\hat{\alpha}$, such that with probability $1-1/\textrm{poly}(n)$, $\mathsf{arb}(G)/c\log^2 n \leq \hat{\alpha} \leq \mathsf{arb}(G)$, where $n=|V|$ and $c$ is a constant. The expected query complexity and running time of the algorithm are $O(n/\mathsf{arb}(G))\cdot \textrm{poly}(\log n)$, and this upper bound also holds with high probability. %($\widetilde{O}(\cdot)$ is used to suppress $\textrm{poly}(\log n)$ dependencies). This bound is optimal for such an approximation up to a $\textrm{poly}(\log n)$ factor.

This paper derives confidence intervals (CI) and time-uniform confidence sequences (CS) for the classical problem of estimating an unknown mean from bounded observations. We present a general approach for deriving concentration bounds, that can be seen as a generalization (and improvement) of the celebrated Chernoff method. At its heart, it is based on deriving a new class of composite nonnegative martingales, with strong connections to testing by betting and the method of mixtures. We show how to extend these ideas to sampling without replacement, another heavily studied problem. In all cases, our bounds are adaptive to the unknown variance, and empirically vastly outperform existing approaches based on Hoeffding or empirical Bernstein inequalities and their recent supermartingale generalizations. In short, we establish a new state-of-the-art for four fundamental problems: CSs and CIs for bounded means, when sampling with and without replacement.

We consider the problem of testing for long-range dependence for time-varying coefficient regression models. The covariates and errors are assumed to be locally stationary, which allows complex temporal dynamics and heteroscedasticity. We develop KPSS, R/S, V/S, and K/S-type statistics based on the nonparametric residuals, and propose bootstrap approaches equipped with a difference-based long-run covariance matrix estimator for practical implementation. Under the null hypothesis, the local alternatives as well as the fixed alternatives, we derive the limiting distributions of the test statistics, establish the uniform consistency of the difference-based long-run covariance estimator, and justify the bootstrap algorithms theoretically. In particular, the exact local asymptotic power of our testing procedure enjoys the order $O( \log^{-1} n)$, the same as that of the classical KPSS test for long memory in strictly stationary series without covariates. We demonstrate the effectiveness of our tests by extensive simulation studies. The proposed tests are applied to a COVID-19 dataset in favor of long-range dependence in the cumulative confirmed series of COVID-19 in several countries, and to the Hong Kong circulatory and respiratory dataset, identifying a new type of 'spurious long memory'.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司