亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The PAN 2021 authorship verification (AV) challenge is part of a three-year strategy, moving from a cross-topic/closed-set AV task to a cross-topic/open-set AV task over a collection of fanfiction texts. In this work, we present a novel hybrid neural-probabilistic framework that is designed to tackle the challenges of the 2021 task. Our system is based on our 2020 winning submission, with updates to significantly reduce sensitivities to topical variations and to further improve the system's calibration by means of an uncertainty-adaptation layer. Our framework additionally includes an out-of-distribution detector (O2D2) for defining non-responses. Our proposed system outperformed all other systems that participated in the PAN 2021 AV task.

相關內容

Learning the relationships between various entities from time-series data is essential in many applications. Gaussian graphical models have been studied to infer these relationships. However, existing algorithms process data in a batch at a central location, limiting their applications in scenarios where data is gathered by different agents. In this paper, we propose a distributed sparse inverse covariance algorithm to learn the network structure (i.e., dependencies among observed entities) in real-time from data collected by distributed agents. Our approach is built on an online graphical alternating minimization algorithm, augmented with a consensus term that allows agents to learn the desired structure cooperatively. We allow the system designer to select the number of communication rounds and optimization steps per data point. We characterize the rate of convergence of our algorithm and provide simulations on synthetic datasets.

Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorisation to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols like the one proposed by Bennett and Brassard provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realised so far are subject to a new class of attacks exploiting implementation defects in the physical devices involved, as demonstrated in numerous ingenious experiments. Following the pioneering work of Ekert proposing the use of entanglement to bound an adversary's information from Bell's theorem, we present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities. We achieve this by combining theoretical developments on finite-statistics analysis, error correction, and privacy amplification, with an event-ready scheme enabling the rapid generation of high-fidelity entanglement between two trapped-ion qubits connected by an optical fibre link. The secrecy of our key is guaranteed device-independently: it is based on the validity of quantum theory, and certified by measurement statistics observed during the experiment. Our result shows that provably secure cryptography with real-world devices is possible, and paves the way for further quantum information applications based on the device-independence principle.

With the underlying aim of increasing efficiency of computational modelling pertinent for managing & protecting the Great Barrier Reef, we perform a preliminary investigation on the use of deep neural networks for opportunistic model emulation of APSIM models by repurposing an existing large dataset containing outputs of APSIM model runs. The dataset has not been specifically tailored for the model emulation task. We employ two neural network architectures for the emulation task: densely connected feed-forward neural network (FFNN), and gated recurrent unit feeding into FFNN (GRU-FFNN), a type of a recurrent neural network. Various configurations of the architectures are trialled. A minimum correlation statistic is used to identify clusters of APSIM scenarios that can be aggregated to form training sets for model emulation. We focus on emulating 4 important outputs of the APSIM model: runoff, soil_loss, DINrunoff, Nleached. The GRU-FFNN architecture with three hidden layers and 128 units per layer provides good emulation of runoff and DINrunoff. However, soil_loss and Nleached were emulated relatively poorly under a wide range of the considered architectures; the emulators failed to capture variability at higher values of these two outputs. While the opportunistic data available from past modelling activities provides a large and useful dataset for exploring APSIM emulation, it may not be sufficiently rich enough for successful deep learning of more complex model dynamics. Design of Computer Experiments may be required to generate more informative data to emulate all output variables of interest. We also suggest the use of synthetic meteorology settings to allow the model to be fed a wide range of inputs. These need not all be representative of normal conditions, but can provide a denser, more informative dataset from which complex relationships between input and outputs can be learned.

While modern deep neural networks are performant perception modules, performance (accuracy) alone is insufficient, particularly for safety-critical robotic applications such as self-driving vehicles. Robot autonomy stacks also require these otherwise blackbox models to produce reliable and calibrated measures of confidence on their predictions. Existing approaches estimate uncertainty from these neural network perception stacks by modifying network architectures, inference procedure, or loss functions. However, in general, these methods lack calibration, meaning that the predictive uncertainties do not faithfully represent the true underlying uncertainties (process noise). Our key insight is that calibration is only achieved by imposing constraints across multiple examples, such as those in a mini-batch; as opposed to existing approaches which only impose constraints per-sample, often leading to overconfident (thus miscalibrated) uncertainty estimates. By enforcing the distribution of outputs of a neural network to resemble a target distribution by minimizing an $f$-divergence, we obtain significantly better-calibrated models compared to prior approaches. Our approach, $f$-Cal, outperforms existing uncertainty calibration approaches on robot perception tasks such as object detection and monocular depth estimation over multiple real-world benchmarks.

This paper employs an audit bit based mechanism to mitigate the effect of Byzantine attacks. In this framework, the optimal attacking strategy for intelligent attackers is investigated for the traditional audit bit based scheme (TAS) to evaluate the robustness of the system. We show that it is possible for an intelligent attacker to degrade the performance of TAS to the system without audit bits. To enhance the robustness of the system in the presence of intelligent attackers, we propose an enhanced audit bit based scheme (EAS). The optimal fusion rule for the proposed scheme is derived and the detection performance of the system is evaluated via the probability of error for the system. Simulation results show that the proposed EAS improves the robustness and the detection performance of the system. Moreover, based on EAS, another new scheme called the reduced audit bit based scheme (RAS) is proposed which further improves system performance. We derive the new optimal fusion rule and the simulation results show that RAS outperforms EAS and TAS in terms of both robustness and detection performance of the system. Then, we extend the proposed RAS for a wide-area cluster based distributed wireless sensor networks (CWSNs). Simulation results show that the proposed RAS significantly reduces the communication overhead between the sensors and the FC, which prolongs the lifetime of the network.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

Generative adversarial networks (GANs) have been promising for many computer vision problems due to their powerful capabilities to enhance the data for training and test. In this paper, we leveraged GANs and proposed a new architecture with a cascaded Single Shot Detector (SSD) for pedestrian detection at distance, which is yet a challenge due to the varied sizes of pedestrians in videos at distance. To overcome the low-resolution issues in pedestrian detection at distance, DCGAN is employed to improve the resolution first to reconstruct more discriminative features for a SSD to detect objects in images or videos. A crucial advantage of our method is that it learns a multi-scale metric to distinguish multiple objects at different distances under one image, while DCGAN serves as an encoder-decoder platform to generate parts of an image that contain better discriminative information. To measure the effectiveness of our proposed method, experiments were carried out on the Canadian Institute for Advanced Research (CIFAR) dataset, and it was demonstrated that the proposed new architecture achieved a much better detection rate, particularly on vehicles and pedestrians at distance, making it highly suitable for smart cities applications that need to discover key objects or pedestrians at distance.

We propose an approach for unsupervised adaptation of object detectors from label-rich to label-poor domains which can significantly reduce annotation costs associated with detection. Recently, approaches that align distributions of source and target images using an adversarial loss have been proven effective for adapting object classifiers. However, for object detection, fully matching the entire distributions of source and target images to each other at the global image level may fail, as domains could have distinct scene layouts and different combinations of objects. On the other hand, strong matching of local features such as texture and color makes sense, as it does not change category level semantics. This motivates us to propose a novel approach for detector adaptation based on strong local alignment and weak global alignment. Our key contribution is the weak alignment model, which focuses the adversarial alignment loss on images that are globally similar and puts less emphasis on aligning images that are globally dissimilar. Additionally, we design the strong domain alignment model to only look at local receptive fields of the feature map. We empirically verify the effectiveness of our approach on several detection datasets comprising both large and small domain shifts.

Object detection in remote sensing, especially in aerial images, remains a challenging problem due to low image resolution, complex backgrounds, and variation of scale and angles of objects in images. In current implementations, multi-scale based and angle-based networks have been proposed and generate promising results with aerial image detection. In this paper, we propose a novel loss function, called Salience Biased Loss (SBL), for deep neural networks, which uses salience information of the input image to achieve improved performance for object detection. Our novel loss function treats training examples differently based on input complexity in order to avoid the over-contribution of easy cases in the training process. In our experiments, RetinaNet was trained with SBL to generate an one-stage detector, SBL-RetinaNet. SBL-RetinaNet is applied to the largest existing public aerial image dataset, DOTA. Experimental results show our proposed loss function with the RetinaNet architecture outperformed other state-of-art object detection models by at least 4.31 mAP, and RetinaNet by 2.26 mAP with the same inference speed of RetinaNet.

北京阿比特科技有限公司