亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a family of integral equation-based solvers for the linear or semilinear heat equation in complicated moving (or stationary) geometries. This approach has significant advantages over more standard finite element or finite difference methods in terms of accuracy, stability and space-time adaptivity. In order to be practical, however, a number of technical capabilites are required: fast algorithms for the evaluation of heat potentials, high-order accurate quadratures for singular and weakly integrals over space-time domains, and robust automatic mesh refinement and coarsening capabilities. We describe all of these components and illustrate the performance of the approach with numerical examples in two space dimensions.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

This paper is concerned with adaptive mesh refinement strategies for the spatial discretization of parabolic problems with dynamic boundary conditions. This includes the characterization of inf-sup stable discretization schemes for a stationary model problem as a preliminary step. Based on an alternative formulation of the system as a partial differential-algebraic equation, we introduce a posteriori error estimators which allow local refinements as well as a special treatment of the boundary. We prove reliability and efficiency of the estimators and illustrate their performance in several numerical experiments.

Solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin and stochastic collocations methods. This work investigates a residual based adaptive algorithm used to approximate the solution of the stationary diffusion equation with lognormal coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence of the scheme for this class of unbounded coefficients has long been an open question. This paper fills this gap and in particular provides a convergence results for the adaptive solution of the lognormal stationary diffusion problem. A computational example supports the theoretical statement.

We consider a shape optimization based method for finding the best interpolation data in the compression of images with noise. The aim is to reconstruct missing regions by means of minimizing a data fitting term in an $L^p$-norm between original images and their reconstructed counterparts using linear diffusion PDE-based inpainting. Reformulating the problem as a constrained optimization over sets (shapes), we derive the topological asymptotic expansion of the considered shape functionals with respect to the insertion of small ball (a single pixel) using the adjoint method. Based on the achieved distributed topological shape derivatives, we propose a numerical approach to determine the optimal set and present numerical experiments showing, the efficiency of our method. Numerical computations are presented that confirm the usefulness of our theoretical findings for PDE-based image compression.

This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-dimensional interior spatial domains. The approach relies on four main elements, namely, 1) A multiple scattering strategy that decomposes a given interior time-domain problem into a sequence of limited-duration time-domain problems of scattering by overlapping open arcs, each one of which is reduced (by means of the Fourier transform) to a sequence of Helmholtz frequency-domain problems; 2) Boundary integral equations on overlapping boundary patches for the solution of the frequency-domain problems in point 1); 3) A smooth "Time-windowing and recentering" methodology that enables both treatment of incident signals of long duration and long time simulation; and, 4) A Fourier transform algorithm that delivers numerically dispersionless, spectrally-accurate time evolution for given incident fields. By recasting the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the proposed approach regularizes the full interior frequency domain problem-which, if obtained by either Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsulate infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the accuracy and efficiency of the proposed methodology.

Though denoising diffusion probabilistic models (DDPMs) have achieved remarkable generation results, the low sampling efficiency of DDPMs still limits further applications. Since DDPMs can be formulated as diffusion ordinary differential equations (ODEs), various fast sampling methods can be derived from solving diffusion ODEs. However, we notice that previous sampling methods with fixed analytical form are not robust with the error in the noise estimated from pretrained diffusion models. In this work, we construct an error-robust Adams solver (ERA-Solver), which utilizes the implicit Adams numerical method that consists of a predictor and a corrector. Different from the traditional predictor based on explicit Adams methods, we leverage a Lagrange interpolation function as the predictor, which is further enhanced with an error-robust strategy to adaptively select the Lagrange bases with lower error in the estimated noise. Experiments on Cifar10, LSUN-Church, and LSUN-Bedroom datasets demonstrate that our proposed ERA-Solver achieves 5.14, 9.42, and 9.69 Fenchel Inception Distance (FID) for image generation, with only 10 network evaluations.

Backward Stochastic Differential Equations (BSDEs) have been widely employed in various areas of social and natural sciences, such as the pricing and hedging of financial derivatives, stochastic optimal control problems, optimal stopping problems and gene expression. Most BSDEs cannot be solved analytically and thus numerical methods must be applied to approximate their solutions. There have been a variety of numerical methods proposed over the past few decades as well as many more currently being developed. For the most part, they exist in a complex and scattered manner with each requiring a variety of assumptions and conditions. The aim of the present work is thus to systematically survey various numerical methods for BSDEs, and in particular, compare and categorize them, for further developments and improvements. To achieve this goal, we focus primarily on the core features of each method based on an extensive collection of 333 references: the main assumptions, the numerical algorithm itself, key convergence properties and advantages and disadvantages, to provide an up-to-date coverage of numerical methods for BSDEs, with insightful summaries of each and a useful comparison and categorization.

In this paper, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is $\mathcal{O}\big(\sqrt{\log(T)/T} \big)$ where $T$ is the time horizon. These results show that switched least squares method for MJS has the same rate of convergence as least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared to the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.

Current methods of blended targets domain adaptation (BTDA) usually infer or consider domain label information but underemphasize hybrid categorical feature structures of targets, which yields limited performance, especially under the label distribution shift. We demonstrate that domain labels are not directly necessary for BTDA if categorical distributions of various domains are sufficiently aligned even facing the imbalance of domains and the label distribution shift of classes. However, we observe that the cluster assumption in BTDA does not comprehensively hold. The hybrid categorical feature space hinders the modeling of categorical distributions and the generation of reliable pseudo labels for categorical alignment. To address these, we propose a categorical domain discriminator guided by uncertainty to explicitly model and directly align categorical distributions $P(Z|Y)$. Simultaneously, we utilize the low-level features to augment the single source features with diverse target styles to rectify the biased classifier $P(Y|Z)$ among diverse targets. Such a mutual conditional alignment of $P(Z|Y)$ and $P(Y|Z)$ forms a mutual reinforced mechanism. Our approach outperforms the state-of-the-art in BTDA even compared with methods utilizing domain labels, especially under the label distribution shift, and in single target DA on DomainNet.

This work introduces a general framework for establishing the long time accuracy for approximations of Markovian dynamical systems on separable Banach spaces. Our results illuminate the role that a certain uniformity in Wasserstein contraction rates for the approximating dynamics bears on long time accuracy estimates. In particular, our approach yields weak consistency bounds on $\mathbb{R}^+$ while providing a means to sidestepping a commonly occurring situation where certain higher order moment bounds are unavailable for the approximating dynamics. Additionally, to facilitate the analytical core of our approach, we develop a refinement of certain `weak Harris theorems'. This extension expands the scope of applicability of such Wasserstein contraction estimates to a variety of interesting SPDE examples involving weaker dissipation or stronger nonlinearity than would be covered by the existing literature. As a guiding and paradigmatic example, we apply our formalism to the stochastic 2D Navier-Stokes equations and to a semi-implicit in time and spectral Galerkin in space numerical approximation of this system. In the case of a numerical approximation, we establish quantitative estimates on the approximation of invariant measures as well as prove weak consistency on $\mathbb{R}^+$. To develop these numerical analysis results, we provide a refinement of $L^2_x$ accuracy bounds in comparison to the existing literature which are results of independent interest.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

北京阿比特科技有限公司