亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Nystr\"om method offers an effective way to obtain low-rank approximation of SPD matrices, and has been recently extended and analyzed to nonsymmetric matrices (leading to the generalized Nystr\"om method). It is a randomized, single-pass, streamable, cost-effective, and accurate alternative to the randomized SVD, and it facilitates the computation of several matrix low-rank factorizations. In this paper, we take these advancements a step further by introducing a higher-order variant of Nystr\"om's methodology tailored to approximating low-rank tensors in the Tucker format: the multilinear Nystr\"om technique. We show that, by introducing appropriate small modifications in the formulation of the higher-order method, strong stability properties can be obtained. This algorithm retains the key attributes of the generalized Nystr\"om method, positioning it as a viable substitute for the randomized higher-order SVD algorithm.

相關內容

We review recent results on the connection between Hermite-Pad\'e approximation problem, multiple orthogonal polynomials, and multidimensional Toda equations in continuous and discrete time. In order to motivate interest in the subject we first present a pedagogical introduction to the classical, by now, relation between the Pad\'e approximation problem, orthogonal polynomials, and the Toda lattice equations. We describe also briefly generalization of the connection to the interpolation problems and to the non-commutative algebra level.

In recent years, depth sensors have become more and more affordable and have found their way into a growing amount of robotic systems. However, mono- or multi-modal sensor registration, often a necessary step for further processing, faces many challenges on raw depth images or point clouds. This paper presents a method of converting depth data into images capable of visualizing spatial details that are basically hidden in traditional depth images. After noise removal, a neighborhood of points forms two normal vectors whose difference is encoded into this new conversion. Compared to Bearing Angle images, our method yields brighter, higher-contrast images with more visible contours and more details. We tested feature-based pose estimation of both conversions in a visual odometry task and RGB-D SLAM. For all tested features, AKAZE, ORB, SIFT, and SURF, our new Flexion images yield better results than Bearing Angle images and show great potential to bridge the gap between depth data and classical computer vision. Source code is available here: //rlsch.github.io/depth-flexion-conversion.

We propose task-adaptive tokenization as a way to adapt the generation pipeline to the specifics of a downstream task and enhance long-form generation in mental health. Inspired by insights from cognitive science, our task-adaptive tokenizer samples variable segmentations from multiple outcomes, with sampling probabilities optimized based on task-specific data. We introduce a strategy for building a specialized vocabulary and introduce a vocabulary merging protocol that allows for the integration of task-specific tokens into the pre-trained model's tokenization step. Through extensive experiments on psychological question-answering tasks in both Chinese and English, we find that our task-adaptive tokenization approach brings a significant improvement in generation performance while using up to 60% fewer tokens. Preliminary experiments point to promising results when using our tokenization approach with very large language models.

This work concerns the enrichment of Discontinuous Galerkin (DG) bases, so that the resulting scheme provides a much better approximation of steady solutions to hyperbolic systems of balance laws. The basis enrichment leverages a prior -- an approximation of the steady solution -- which we propose to compute using a Physics-Informed Neural Network (PINN). To that end, after presenting the classical DG scheme, we show how to enrich its basis with a prior. Convergence results and error estimates follow, in which we prove that the basis with prior does not change the order of convergence, and that the error constant is improved. To construct the prior, we elect to use parametric PINNs, which we introduce, as well as the algorithms to construct a prior from PINNs. We finally perform several validation experiments on four different hyperbolic balance laws to highlight the properties of the scheme. Namely, we show that the DG scheme with prior is much more accurate on steady solutions than the DG scheme without prior, while retaining the same approximation quality on unsteady solutions.

Non-fungible tokens, NFT, have been used to record ownership of real estate, art, digital assets, and more recently to serve legal notice. They provide an important and accessible non-financial use of cryptocurrency's blockchain but are peculiar because ownership by NFT confers no rights over the asset. This work shows that it is possible to specify that peculiar property by combining functional and epistemic properties. Suitability of the specification is evaluated by proof that the blockchain implementation conforms to it, and by its use in an analysis of serving legal notice.

In this work, we introduce a new acquisition function for sequential sampling to efficiently quantify rare-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. Our acquisition is a generalization of the likelihood-weighted (LW) acquisition that was initially designed for the same purpose and then extended to many other applications. The improvement in our acquisition comes from the generalized form with two additional parameters, by varying which one can target and address two weaknesses of the original LW acquisition: (1) that the input space associated with rare-event responses is not sufficiently stressed in sampling; (2) that the surrogate model (generated from samples) may have significant deviation from the true ItR function, especially for cases with complex ItR function and limited number of samples. In addition, we develop a critical procedure in Monte-Carlo discrete optimization of the acquisition function, which achieves orders of magnitude acceleration compared to existing approaches for such type of problems. The superior performance of our new acquisition to the original LW acquisition is demonstrated in a number of test cases, including some cases that were designed to show the effectiveness of the original LW acquisition. We finally apply our method to an engineering example to quantify the rare-event roll-motion statistics of a ship in a random sea.

In two and three dimensions, we design and analyze a posteriori error estimators for the mixed Stokes eigenvalue problem. The unknowns on this mixed formulation are the pseudotress, velocity and pressure. With a lowest order mixed finite element scheme, together with a postprocressing technique, we prove that the proposed estimator is reliable and efficient. We illustrate the results with several numerical tests in two and three dimensions in order to assess the performance of the estimator.

Given the importance of the claim, we want to start by exposing the following consideration: this claim comes out more than a year after the article "Practical applications of Set Shaping Theory in Huffman coding" which reports the program that carried out an experiment of data compression in which the coding limit NH0(S) of a single sequence was questioned. We waited so long because, before making a claim of this type, we wanted to be sure of the consistency of the result. All this time the program has always been public; anyone could download it, modify it and independently obtain the reported results. In this period there have been many information theory experts who have tested the program and agreed to help us, we thank these people for the time dedicated to us and their precious advice. Given a sequence S of random variables i.i.d. with symbols belonging to an alphabet A; the parameter NH0(S) (the zero-order empirical entropy multiplied by the length of the sequence) is considered the average coding limit of the symbols of the sequence S through a uniquely decipherable and instantaneous code. Our experiment that calls into question this limit is the following: a sequence S is generated in a random and uniform way, the value NH0(S) is calculated, the sequence S is transformed into a new sequence f(S), longer but with the symbols belonging to the same alphabet, finally we code f(S) using Huffman coding. By generating a statistically significant number of sequences we obtain that the average value of the length of the encoded sequence f(S) is less than the average value of NH0(S). In this way, a result is obtained which is incompatible with the meaning given to NH0(S).

In this paper, we propose a low rank approximation method for efficiently solving stochastic partial differential equations. Specifically, our method utilizes a novel low rank approximation of the stiffness matrices, which can significantly reduce the computational load and storage requirements associated with matrix inversion without losing accuracy. To demonstrate the versatility and applicability of our method, we apply it to address two crucial uncertainty quantification problems: stochastic elliptic equations and optimal control problems governed by stochastic elliptic PDE constraints. Based on varying dimension reduction ratios, our algorithm exhibits the capability to yield a high precision numerical solution for stochastic partial differential equations, or provides a rough representation of the exact solutions as a pre-processing phase. Meanwhile, our algorithm for solving stochastic optimal control problems allows a diverse range of gradient-based unconstrained optimization methods, rendering it particularly appealing for computationally intensive large-scale problems. Numerical experiments are conducted and the results provide strong validation of the feasibility and effectiveness of our algorithm.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司