The sequence of entropy numbers quantifies the degree of compactness of a linear operator acting between quasi-Banach spaces. We determine the asymptotic behavior of entropy numbers in the case of natural embeddings between finite-dimensional Lorentz spaces $\ell_{p,q}^n$ in all regimes; our results are sharp up to constants. This generalizes classical results obtained by Sch\"utt (in the case of Banach spaces) and Edmunds and Triebel, K\"uhn, as well as Gu\'edon and Litvak (in the case of quasi-Banach spaces) for entropy numbers of identities between Lebesgue sequence spaces $\ell_p^n$. We employ techniques such as interpolation, volume comparison as well as techniques from sparse approximation and combinatorial arguments. Further, we characterize entropy numbers of embeddings between symmetric quasi-Banach spaces satisfying a lattice property in terms of best $s$-term approximation numbers.
This paper investigates the convergence time of log-linear learning to an $\epsilon$-efficient Nash equilibrium (NE) in potential games. In such games, an efficient NE is defined as the maximizer of the potential function. Existing results are limited to potential games with stringent structural assumptions and entail exponential convergence times in $1/\epsilon$. Unaddressed so far, we tackle general potential games and prove the first finite-time convergence to an $\epsilon$-efficient NE. In particular, by using a problem-dependent analysis, our bound depends polynomially on $1/\epsilon$. Furthermore, we provide two extensions of our convergence result: first, we show that a variant of log-linear learning that requires a factor $A$ less feedback on the utility per round enjoys a similar convergence time; second, we demonstrate the robustness of our convergence guarantee if log-linear learning is subject to small perturbations such as alterations in the learning rule or noise-corrupted utilities.
Many flexible families of positive random variables exhibit non-closed forms of the density and distribution functions and this feature is considered unappealing for modelling purposes. However, such families are often characterized by a simple expression of the corresponding Laplace transform. Relying on the Laplace transform, we propose to carry out parameter estimation and goodness-of-fit testing for a general class of non-standard laws. We suggest a novel data-driven inferential technique, providing parameter estimators and goodness-of-fit tests, whose large-sample properties are derived. The implementation of the method is specifically considered for the positive stable and Tweedie distributions. A Monte Carlo study shows good finite-sample performance of the proposed technique for such laws.
Assouad-Nagata dimension addresses both large and small scale behaviors of metric spaces and is a refinement of Gromov's asymptotic dimension. A metric space $M$ is a minor-closed metric if there exists an (edge-)weighted graph $G$ satisfying a fixed minor-closed property such that the underlying space of $M$ is the vertex-set of $G$, and the metric of $M$ is the distance function in $G$. Minor-closed metrics naturally arise when removing redundant edges of the underlying graphs by using edge-deletion and edge-contraction. In this paper, we determine the Assouad-Nagata dimension of every minor-closed metric. Our main theorem simultaneously generalizes known results about the asymptotic dimension of $H$-minor free unweighted graphs and about the Assouad-Nagata dimension of complete Riemannian surfaces with finite Euler genus.
Characteristic formulae give a complete logical description of the behaviour of processes modulo some chosen notion of behavioural semantics. They allow one to reduce equivalence or preorder checking to model checking, and are exactly the formulae in the modal logics characterizing classic behavioural equivalences and preorders for which model checking can be reduced to equivalence or preorder checking. This paper studies the complexity of determining whether a formula is characteristic for some finite, loop-free process in each of the logics providing modal characterizations of the simulation-based semantics in van Glabbeek's branching-time spectrum. Since characteristic formulae in each of those logics are exactly the consistent and prime ones, it presents complexity results for the satisfiability and primality problems, and investigates the boundary between modal logics for which those problems can be solved in polynomial time and those for which they become computationally hard. Amongst other contributions, this article also studies the complexity of constructing characteristic formulae in the modal logics characterizing simulation-based semantics, both when such formulae are presented in explicit form and via systems of equations.
We study the expressivity and the complexity of various logics in probabilistic team semantics with the Boolean negation. In particular, we study the extension of probabilistic independence logic with the Boolean negation, and a recently introduced logic FOPT. We give a comprehensive picture of the relative expressivity of these logics together with the most studied logics in probabilistic team semantics setting, as well as relating their expressivity to a numerical variant of second-order logic. In addition, we introduce novel entropy atoms and show that the extension of first-order logic by entropy atoms subsumes probabilistic independence logic. Finally, we obtain some results on the complexity of model checking, validity, and satisfiability of our logics.
We prove that each eigenvalue l(k) of the Kirchhoff Laplacian K of a graph or quiver is bounded above by d(k)+d(k-1) for all k in {1,...,n}. Here l(1),...,l(n) is a non-decreasing list of the eigenvalues of K and d(1),..,d(n) is a non-decreasing list of vertex degrees with the additional assumption d(0)=0. We also prove that in general the weak Brouwer-Haemers lower bound d(k) + (n-k) holds for all eigenvalues l(k) of the Kirchhoff matrix of a quiver.
Aboulker et al. proved that a digraph with large enough dichromatic number contains any fixed digraph as a subdivision. The dichromatic number of a digraph is the smallest order of a partition of its vertex set into acyclic induced subdigraphs. A digraph is dicritical if the removal of any arc or vertex decreases its dichromatic number. In this paper we give sufficient conditions on a dicritical digraph of large order or large directed girth to contain a given digraph as a subdivision. In particular, we prove that (i) for every integers $k,\ell$, large enough dicritical digraphs with dichromatic number $k$ contain an orientation of a cycle with at least $\ell$ vertices; (ii) there are functions $f,g$ such that for every subdivision $F^*$ of a digraph $F$, digraphs with directed girth at least $f(F^*)$ and dichromatic number at least $g(F)$ contain a subdivision of $F^*$, and if $F$ is a tree, then $g(F)=|V(F)|$; (iii) there is a function $f$ such that for every subdivision $F^*$ of $TT_3$ (the transitive tournament on three vertices), digraphs with directed girth at least $f(F^*)$ and minimum out-degree at least $2$ contain $F^*$ as a subdivision.
We introduce a test of uniformity for (hyper)spherical data motivated by the stereographic projection. The closed-form expression of the test statistic and its null asymptotic distribution are derived using Gegenbauer polynomials. The power against rotationally symmetric local alternatives is provided, and simulations illustrate the non-null asymptotic results. The stereographic test outperforms other tests in a testing scenario with antipodal dependence.
We present a novel formal system for proving quantitative-leakage properties of programs. Based on a theory of Quantitative Information Flow (QIF) that models information leakage as a noisy communication channel, it uses "gain-functions" for the description and measurement of expected leaks. We use a small imperative programming language, augmented with leakage features, and with it express adversaries' activities in the style of, but more generally than, the Hoare triples or expectation transformers that traditionally express deterministic or probabilistic correctness but without information flow. The programs are annotated with "gain-expressions" that capture simple adversarial settings such as "Guess the secret in one try." but also much more general ones; and our formal syntax and logic -based framework enables us to transform such gain-expressions that apply after a program has finished to ones that equivalently apply before the program has begun. In that way we enable a formal proof-based reasoning system for QIF at the source level. We apply it to the %programming language we have chosen, and demonstrate its effectiveness in a number of small but sometimes intricate situations.
The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.