亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Local certification is a distributed mechanism enabling the nodes of a network to check the correctness of the current configuration, thanks to small pieces of information called certificates. For many classic global properties, like checking the acyclicity of the network, the optimal size of the certificates depends on the size of the network, $n$. In this paper, we focus on properties for which the size of the certificates does not depend on $n$ but on other parameters. We focus on three such important properties and prove tight bounds for all of them. Namely, we prove that the optimal certification size is: $\Theta(\log k)$ for $k$-colorability (and even exactly $\lceil \log k \rceil$ bits in the anonymous model while previous works had only proved a $2$-bit lower bound); $(1/2)\log t+o(\log t)$ for dominating sets at distance $t$ (an unexpected and tighter-than-usual bound) ; and $\Theta(\log \Delta)$ for perfect matching in graphs of maximum degree $\Delta$ (the first non-trivial bound parameterized by $\Delta$). We also prove some surprising upper bounds, for example, certifying the existence of a perfect matching in a planar graph can be done with only two bits. In addition, we explore various specific cases for these properties, in particular improving our understanding of the trade-off between locality of the verification and certificate size.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The dynamic mode decomposition (DMD) is a simple and powerful data-driven modeling technique that is capable of revealing coherent spatiotemporal patterns from data. The method's linear algebra-based formulation additionally allows for a variety of optimizations and extensions that make the algorithm practical and viable for real-world data analysis. As a result, DMD has grown to become a leading method for dynamical system analysis across multiple scientific disciplines. PyDMD is a Python package that implements DMD and several of its major variants. In this work, we expand the PyDMD package to include a number of cutting-edge DMD methods and tools specifically designed to handle dynamics that are noisy, multiscale, parameterized, prohibitively high-dimensional, or even strongly nonlinear. We provide a complete overview of the features available in PyDMD as of version 1.0, along with a brief overview of the theory behind the DMD algorithm, information for developers, tips regarding practical DMD usage, and introductory coding examples. All code is available at //github.com/PyDMD/PyDMD .

A multi-output Gaussian process (GP) is introduced as a model for the joint posterior distribution of the local predictive ability of set of models and/or experts, conditional on a vector of covariates, from historical predictions in the form of log predictive scores. Following a power transformation of the log scores, a GP with Gaussian noise can be used, which allows faster computation by first using Hamiltonian Monte Carlo to sample the hyper-parameters of the GP from a model where the latent GP surface has been marginalized out, and then using these draws to generate draws of joint predictive ability conditional on a new vector of covariates. Linear pools based on learned joint local predictive ability are applied to predict daily bike usage in Washington DC.

While branching network structures abound in nature, their objective analysis is more difficult than expected because existing quantitative methods often rely on the subjective judgment of branch structures. This problem is particularly pronounced when dealing with images comprising discrete particles. Here we propose an objective framework for quantitative analysis of branching networks by introducing the mathematical definitions for internal and external structures based on topological data analysis, specifically, persistent homology. We compare persistence diagrams constructed from images with and without plots on the convex hull. The unchanged points in the two diagrams are the internal structures and the difference between the two diagrams is the external structures. We construct a mathematical theory for our method and show that the internal structures have a monotonicity relationship with respect to the plots on the convex hull, while the external structures do not. This is the phenomenon related to the resolution of the image. Our method can be applied to a wide range of branch structures in biology, enabling objective analysis of numbers, spatial distributions, sizes, and more. Additionally, our method has the potential to be combined with other tools in topological data analysis, such as the generalized persistence landscape.

The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.

Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. To address this problem, we proposed the MR using Bias-corrected Estimating Equation (MRBEE) that can infer unbiased causal relationships with many weak IVs and account for horizontal pleiotropy simultaneously. While the practical significance of MRBEE was demonstrated in our parallel work (Lorincz-Comi (2023)), this paper established the statistical theories of multivariable IVW and MRBEE with many weak IVs. First, we showed that the bias of the multivariable IVW estimate is caused by the error-in-variable bias, whose scale and direction are inflated and influenced by weak instrument bias and sample overlaps of exposures and outcome GWAS cohorts, respectively. Second, we investigated the asymptotic properties of multivariable IVW and MRBEE, showing that MRBEE outperforms multivariable IVW regarding unbiasedness of causal effect estimation and asymptotic validity of causal inference. Finally, we applied MRBEE to examine myopia and revealed that education and outdoor activity are causal to myopia whereas indoor activity is not.

For the data segmentation problem in high-dimensional linear regression settings, a commonly made assumption is that the regression parameters are segment-wise sparse, which enables many existing methods to estimate the parameters locally via $\ell_1$-regularised maximum likelihood-type estimation and contrast them for change point detection. Contrary to the common belief, we show that the sparsity of neither regression parameters nor their differences, a.k.a.\ differential parameters, is necessary for achieving the consistency in multiple change point detection. In fact, both statistically and computationally, better efficiency is attained by a simple strategy that scans for large discrepancies in local covariance between the regressors and the response. We go a step further and propose a suite of tools for directly inferring about the differential parameters post-segmentation, which are applicable even when the regression parameters themselves are non-sparse. Theoretical investigations are conducted under general conditions permitting non-Gaussianity, temporal dependence and ultra-high dimensionality. Numerical experiments demonstrate the competitiveness of the proposed methodologies.

The availability of data is limited in some fields, especially for object detection tasks, where it is necessary to have correctly labeled bounding boxes around each object. A notable example of such data scarcity is found in the domain of marine biology, where it is useful to develop methods to automatically detect submarine species for environmental monitoring. To address this data limitation, the state-of-the-art machine learning strategies employ two main approaches. The first involves pretraining models on existing datasets before generalizing to the specific domain of interest. The second strategy is to create synthetic datasets specifically tailored to the target domain using methods like copy-paste techniques or ad-hoc simulators. The first strategy often faces a significant domain shift, while the second demands custom solutions crafted for the specific task. In response to these challenges, here we propose a transfer learning framework that is valid for a generic scenario. In this framework, generated images help to improve the performances of an object detector in a few-real data regime. This is achieved through a diffusion-based generative model that was pretrained on large generic datasets, and is not trained on the task-specific domain. We validate our approach on object detection tasks, specifically focusing on fishes in an underwater environment, and on the more common domain of cars in an urban setting. Our method achieves detection performance comparable to models trained on thousands of images, using only a few hundreds of input data. Our results pave the way for new generative AI-based protocols for machine learning applications in various domains, for instance ranging from geophysics to biology and medicine.

TestGen automatically generates unit tests, carved from serialized observations of complex objects, observed during app execution. We describe the development and deployment of TestGen at Meta. In particular, we focus on the scalability challenges overcome during development in order to deploy observation-based test carving at scale in industry. So far, TestGen has landed 518 tests into production, which have been executed 9,617,349 times in continuous integration, finding 5,702 faults. Meta is currently in the process of more widespread deployment. Our evaluation reveals that, when carving its observations from 4,361 reliable end-to-end tests, TestGen was able to generate tests for at least 86\% of the classes covered by end-to-end tests. Testing on 16 Kotlin Instagram app-launch-blocking tasks demonstrated that the TestGen tests would have trapped 13 of these before they became launch blocking.

Understanding the mechanisms through which neural networks extract statistics from input-label pairs is one of the most important unsolved problems in supervised learning. Prior works have identified that the gram matrices of the weights in trained neural networks of general architectures are proportional to the average gradient outer product of the model, in a statement known as the Neural Feature Ansatz (NFA). However, the reason these quantities become correlated during training is poorly understood. In this work, we explain the emergence of this correlation. We identify that the NFA is equivalent to alignment between the left singular structure of the weight matrices and a significant component of the empirical neural tangent kernels associated with those weights. We establish that the NFA introduced in prior works is driven by a centered NFA that isolates this alignment. We show that the speed of NFA development can be predicted analytically at early training times in terms of simple statistics of the inputs and labels. Finally, we introduce a simple intervention to increase NFA correlation at any given layer, which dramatically improves the quality of features learned.

Anomaly detection in SDN using data flow prediction is a difficult task. This problem is included in the category of time series and regression problems. Machine learning approaches are challenging in this field due to the manual selection of features. On the other hand, deep learning approaches have important features due to the automatic selection of features. Meanwhile, RNN-based approaches have been used the most. The LSTM and GRU approaches learn dependent entities well; on the other hand, the IndRNN approach learns non-dependent entities in time series. The proposed approach tried to use a combination of IndRNN and LSTM approaches to learn dependent and non-dependent features. Feature selection approaches also provide a suitable view of features for the models; for this purpose, four feature selection models, Filter, Wrapper, Embedded, and Autoencoder were used. The proposed IndRNNLSTM algorithm, in combination with Embedded, was able to achieve MAE=1.22 and RMSE=9.92 on NSL-KDD data.

北京阿比特科技有限公司