$ \newcommand{\epsA}{\Mh{\delta}} \newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \renewcommand{\P}{P} \newcommand{\diam}{\Delta} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\pt}{p} \newcommand{\distY}[2]{\left\| {#1} - {#2} \right\|} \newcommand{\PP}{P} \newcommand{\ptq}{q} \newcommand{\pts}{s}$Given a set $P \subset \Re^d$ of $n$ points, with diameter $\diam$, and a parameter $\epsA \in (0,1)$, it is known that there is a partition of $P$ into sets $P_1, \ldots, P_t$, each of size $O(1/\epsA^2)$, such that their convex-hulls all intersect a common ball of radius $\epsA \diam$. We prove that a random partition, with a simple alteration step, yields the desired partition, resulting in a (randomized) linear time algorithm. We also provide a deterministic algorithm with running time $O( dn \log n)$. Previous proofs were either existential (i.e., at least exponential time), or required much bigger sets. In addition, the algorithm and its proof of correctness are significantly simpler than previous work, and the constants are slightly better. We also include a number of applications and extensions using the same central ideas. For example, we provide a linear time algorithm for computing a ``fuzzy'' centerpoint, and prove a no-dimensional weak $\eps$-net theorem with an improved constant.
Surrogate models are statistical or conceptual approximations for more complex simulation models. In this context, it is crucial to propagate the uncertainty induced by limited simulation budget and surrogate approximation error to predictions, inference, and subsequent decision-relevant quantities. However, quantifying and then propagating the uncertainty of surrogates is usually limited to special analytic cases or is otherwise computationally very expensive. In this paper, we propose a framework enabling a scalable, Bayesian approach to surrogate modeling with thorough uncertainty quantification, propagation, and validation. Specifically, we present three methods for Bayesian inference with surrogate models given measurement data. This is a task where the propagation of surrogate uncertainty is especially relevant, because failing to account for it may lead to biased and/or overconfident estimates of the parameters of interest. We showcase our approach in two detailed case studies for both linear and nonlinear modeling scenarios. Uncertainty propagation in surrogate models enables more reliable and safe approximation of expensive simulators and will therefore be useful in various fields of applications.
This paper studies the joint community detection and phase synchronization problem on the \textit{stochastic block model with relative phase}, where each node is associated with an unknown phase angle. This problem, with a variety of real-world applications, aims to recover the cluster structure and associated phase angles simultaneously. We show this problem exhibits a \textit{``multi-frequency''} structure by closely examining its maximum likelihood estimation (MLE) formulation, whereas existing methods are not originated from this perspective. To this end, two simple yet efficient algorithms that leverage the MLE formulation and benefit from the information across multiple frequencies are proposed. The former is a spectral method based on the novel multi-frequency column-pivoted QR factorization. The factorization applied to the top eigenvectors of the observation matrix provides key information about the cluster structure and associated phase angles. The second approach is an iterative multi-frequency generalized power method, where each iteration updates the estimation in a matrix-multiplication-then-projection manner. Numerical experiments show that our proposed algorithms significantly improve the ability of exactly recovering the cluster structure and the accuracy of the estimated phase angles, compared to state-of-the-art algorithms.
This paper presents $\textbf{R}$epresentation-$\textbf{C}$onditioned image $\textbf{G}$eneration (RCG), a simple yet effective image generation framework which sets a new benchmark in class-unconditional image generation. RCG does not condition on any human annotations. Instead, it conditions on a self-supervised representation distribution which is mapped from the image distribution using a pre-trained encoder. During generation, RCG samples from such representation distribution using a representation diffusion model (RDM), and employs a pixel generator to craft image pixels conditioned on the sampled representation. Such a design provides substantial guidance during the generative process, resulting in high-quality image generation. Tested on ImageNet 256$\times$256, RCG achieves a Frechet Inception Distance (FID) of 3.31 and an Inception Score (IS) of 253.4. These results not only significantly improve the state-of-the-art of class-unconditional image generation but also rival the current leading methods in class-conditional image generation, bridging the long-standing performance gap between these two tasks. Code is available at //github.com/LTH14/rcg.
We present a best-response based algorithm for computing verifiable $\varepsilon$-perfect Bayesian equilibria for sequential auctions with combinatorial bidding spaces and incomplete information. Previous work has focused only on computing Bayes-Nash equilibria for static single-round auctions, which our work captures as a special case. Additionally, we prove an upper bound $\varepsilon$ on the utility loss of our approximate equilibria and present an algorithm to efficiently compute $\varepsilon$ based on the immediate loss at each subgame. We evaluate the performance of our algorithm by reproducing known results from several auctions previously introduced in the literature, including a model of combinatorial split-award auctions used in procurement.
We numerically demonstrate a silicon add-drop microring-based reservoir computing scheme that combines parallel delayed inputs and wavelength division multiplexing. The scheme solves memory-demanding tasks like time-series prediction with good performance without requiring external optical feedback.
Estimation of quantum relative entropy and its R\'{e}nyi generalizations is a fundamental statistical task in quantum information theory, physics, and beyond. While several estimators of these divergences have been proposed in the literature along with their computational complexities explored, a limit distribution theory which characterizes the asymptotic fluctuations of the estimation error is still premature. As our main contribution, we characterize these asymptotic distributions in terms of Fr\'{e}chet derivatives of elementary operator-valued functions. We achieve this by leveraging an operator version of Taylor's theorem and identifying the regularity conditions needed. As an application of our results, we consider an estimator of quantum relative entropy based on Pauli tomography of quantum states and show that the resulting asymptotic distribution is a centered normal, with its variance characterized in terms of the Pauli operators and states. We utilize the knowledge of the aforementioned limit distribution to obtain asymptotic performance guarantees for a multi-hypothesis testing problem.
We present a performant, general-purpose gradient-guided nested sampling algorithm, ${\tt GGNS}$, combining the state of the art in differentiable programming, Hamiltonian slice sampling, clustering, mode separation, dynamic nested sampling, and parallelization. This unique combination allows ${\tt GGNS}$ to scale well with dimensionality and perform competitively on a variety of synthetic and real-world problems. We also show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution. This combination leads to faster mode discovery and more accurate estimates of the partition function.
We investigate algorithms for testing whether an image is connected. Given a proximity parameter $\epsilon\in(0,1)$ and query access to a black-and-white image represented by an $n\times n$ matrix of Boolean pixel values, a (1-sided error) connectedness tester accepts if the image is connected and rejects with probability at least 2/3 if the image is $\epsilon$-far from connected. We show that connectedness can be tested nonadaptively with $O(\frac 1{\epsilon^2})$ queries and adaptively with $O(\frac{1}{\epsilon^{3/2}} \sqrt{\log\frac{1}{\epsilon}})$ queries. The best connectedness tester to date, by Berman, Raskhodnikova, and Yaroslavtsev (STOC 2014) had query complexity $O(\frac 1{\epsilon^2}\log \frac 1{\epsilon})$ and was adaptive. We also prove that every nonadaptive, 1-sided error tester for connectedness must make $\Omega(\frac 1\epsilon\log \frac 1\epsilon)$ queries.
We present TIGERScore, a \textbf{T}rained metric that follows \textbf{I}nstruction \textbf{G}uidance to perform \textbf{E}xplainable, and \textbf{R}eference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA-2, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. The dataset consists of 42K quadruple in the form of (instruction, input, system output $\rightarrow$ error analysis). We collected the `system outputs' through from a large variety of models to cover different types of errors. To quantitatively assess our metric, we evaluate its correlation with human ratings on 5 held-in datasets, 2 held-out datasets and show that TIGERScore can achieve the open-source SoTA correlation with human ratings across these datasets and almost approaches GPT-4 evaluator. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8\% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.
We define the $\textit{marginal information}$ of a communication protocol, and use it to prove XOR lemmas for communication complexity. We show that if every $C$-bit protocol has bounded advantage for computing a Boolean function $f$, then every $\tilde \Omega(C \sqrt{n})$-bit protocol has advantage $\exp(-\Omega(n))$ for computing the $n$-fold xor $f^{\oplus n}$. We prove exponentially small bounds in the average case setting, and near optimal bounds for product distributions and for bounded-round protocols.