亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a performant, general-purpose gradient-guided nested sampling algorithm, ${\tt GGNS}$, combining the state of the art in differentiable programming, Hamiltonian slice sampling, clustering, mode separation, dynamic nested sampling, and parallelization. This unique combination allows ${\tt GGNS}$ to scale well with dimensionality and perform competitively on a variety of synthetic and real-world problems. We also show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution. This combination leads to faster mode discovery and more accurate estimates of the partition function.

相關內容

Finding a concise and interpretable mathematical formula that accurately describes the relationship between each variable and the predicted value in the data is a crucial task in scientific research, as well as a significant challenge in artificial intelligence. This problem is referred to as symbolic regression, which is an NP-hard problem. In the previous year, a novel symbolic regression methodology utilizing Monte Carlo Tree Search (MCTS) was advanced, achieving state-of-the-art results on a diverse range of datasets. although this algorithm has shown considerable improvement in recovering target expressions compared to previous methods, the lack of guidance during the MCTS process severely hampers its search efficiency. Recently, some algorithms have added a pre-trained policy network to guide the search of MCTS, but the pre-trained policy network generalizes poorly. To optimize the trade-off between efficiency and versatility, we introduce SR-GPT, a novel algorithm for symbolic regression that integrates Monte Carlo Tree Search (MCTS) with a Generative Pre-Trained Transformer (GPT). By using GPT to guide the MCTS, the search efficiency of MCTS is significantly improved. Next, we utilize the MCTS results to further refine the GPT, enhancing its capabilities and providing more accurate guidance for the MCTS. MCTS and GPT are coupled together and optimize each other until the target expression is successfully determined. We conducted extensive evaluations of SR-GPT using 222 expressions sourced from over 10 different symbolic regression datasets. The experimental results demonstrate that SR-GPT outperforms existing state-of-the-art algorithms in accurately recovering symbolic expressions both with and without added noise.

Refreshable tactile displays (RTDs) are predicted to soon become a viable option for the provision of accessible graphics for people who are blind or have low vision (BLV). This new technology for the tactile display of braille and graphics, usually using raised pins, makes it easier to generate and access a large number of graphics. However, it differs from existing tactile graphics in terms of scale, height and fidelity. Here, we share the perspectives of four key stakeholders -- blind touch readers, vision specialist teachers, accessible format producers and assistive technology providers -- to explore the potential uses, advantages and needs relating to the introduction of RTDs. We also provide advice on what role the data visualisation community can take to help ensure that people who are BLV are best able to benefit from the introduction of affordable RTDs.

We prove that to each real singularity $f: (\mathbb{R}^{n+1}, 0) \to (\mathbb{R}, 0)$ one can associate two systems of differential equations $\mathfrak{g}^{k\pm}_f$ which are pushforwards in the category of $\mathcal{D}$-modules over $\mathbb{R}^{\pm}$, of the sheaf of real analytic functions on the total space of the positive, respectively negative, Milnor fibration. We prove that for $k=0$ if $f$ is an isolated singularity then $\mathfrak{g}^{\pm}$ determines the the $n$-th homology groups of the positive, respectively negative, Milnor fibre. We then calculate $\mathfrak{g}^{+}$ for ordinary quadratic singularities and prove that under certain conditions on the choice of morsification, one recovers the top homology groups of the Milnor fibers of any isolated singularity $f$. As an application we construct a public-key encryption scheme based on morsification of singularities.

The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.

The Sparse Identification of Nonlinear Dynamics (SINDy) algorithm can be applied to stochastic differential equations to estimate the drift and the diffusion function using data from a realization of the SDE. The SINDy algorithm requires sample data from each of these functions, which is typically estimated numerically from the data of the state. We analyze the performance of the previously proposed estimates for the drift and diffusion function to give bounds on the error for finite data. However, since this algorithm only converges as both the sampling frequency and the length of trajectory go to infinity, obtaining approximations within a certain tolerance may be infeasible. To combat this, we develop estimates with higher orders of accuracy for use in the SINDy framework. For a given sampling frequency, these estimates give more accurate approximations of the drift and diffusion functions, making SINDy a far more feasible system identification method.

We present the first $\varepsilon$-differentially private, computationally efficient algorithm that estimates the means of product distributions over $\{0,1\}^d$ accurately in total-variation distance, whilst attaining the optimal sample complexity to within polylogarithmic factors. The prior work had either solved this problem efficiently and optimally under weaker notions of privacy, or had solved it optimally while having exponential running times.

In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.

The family of log-concave density functions contains various kinds of common probability distributions. Due to the shape restriction, it is possible to find the nonparametric estimate of the density, for example, the nonparametric maximum likelihood estimate (NPMLE). However, the associated uncertainty quantification of the NPMLE is less well developed. The current techniques for uncertainty quantification are Bayesian, using a Dirichlet process prior combined with the use of Markov chain Monte Carlo (MCMC) to sample from the posterior. In this paper, we start with the NPMLE and use a version of the martingale posterior distribution to establish uncertainty about the NPMLE. The algorithm can be implemented in parallel and hence is fast. We prove the convergence of the algorithm by constructing suitable submartingales. We also illustrate results with different models and settings and some real data, and compare our method with that within the literature.

Join-preserving maps on the discrete time scale $\omega^+$, referred to as time warps, have been proposed as graded modalities that can be used to quantify the growth of information in the course of program execution. The set of time warps forms a simple distributive involutive residuated lattice -- called the time warp algebra -- that is equipped with residual operations relevant to potential applications. In this paper, we show that although the time warp algebra generates a variety that lacks the finite model property, it nevertheless has a decidable equational theory. We also describe an implementation of a procedure for deciding equations in this algebra, written in the OCaml programming language, that makes use of the Z3 theorem prover.

We characterize the epimorphisms in homotopy type theory (HoTT) as the fiberwise acyclic maps and develop a type-theoretic treatment of acyclic maps and types in the context of synthetic homotopy theory. We present examples and applications in group theory, such as the acyclicity of the Higman group, through the identification of groups with $0$-connected, pointed $1$-types. Many of our results are formalized as part of the agda-unimath library.

北京阿比特科技有限公司