亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the impact of memory orientation on the bias pattern of SRAM-based PUFs. We designed and fabricated a 65nm CMOS chip that contains eleven SRAM macros that exercise different memory- and chip-level parameters. At the memory level, several parameters passed to the SRAM compiler are considered, including the number of addresses, the number of words, the aspect ratio, and the chosen bitcell. Chip-level decisions are considered during the floorplan, including the location and rotation of each SRAM macro in the testchip. In this study, we conduct a comprehensive analysis of different memory orientations and their effect on the biasing direction. Physical measurements performed on 50 fabricated chips revealed that specific memory orientations, namely R270 and MY90, exhibit a distinct negative biasing direction compared to other orientations. Importantly, this biasing direction remains consistent regardless of memory type, column mux ratio, memory size, or the utilization of SRAMs with different bitcells. Overall, this study highlights the significance of careful physical implementation and memory orientation selection in designing SRAM-based PUFs. Our findings can guide designers in the selection of SRAM memories with properties that make for better PUFs that potentially require less error correction effort to compensate for instability.

相關內容

This paper presents a novel approach to generating the 3D motion of a human interacting with a target object, with a focus on solving the challenge of synthesizing long-range and diverse motions, which could not be fulfilled by existing auto-regressive models or path planning-based methods. We propose a hierarchical generation framework to solve this challenge. Specifically, our framework first generates a set of milestones and then synthesizes the motion along them. Therefore, the long-range motion generation could be reduced to synthesizing several short motion sequences guided by milestones. The experiments on the NSM, COUCH, and SAMP datasets show that our approach outperforms previous methods by a large margin in both quality and diversity. The source code is available on our project page //zju3dv.github.io/hghoi.

In this paper, the limitations of YOLOv5s model on small target detection task are deeply studied and improved. The performance of the model is successfully enhanced by introducing GhostNet-based convolutional module, RepGFPN-based Neck module optimization, CA and Transformer's attention mechanism, and loss function improvement using NWD. The experimental results validate the positive impact of these improvement strategies on model precision, recall and mAP. In particular, the improved model shows significant superiority in dealing with complex backgrounds and tiny targets in real-world application tests. This study provides an effective optimization strategy for the YOLOv5s model on small target detection, and lays a solid foundation for future related research and applications.

Our work addresses the critical issue of distinguishing text generated by Large Language Models (LLMs) from human-produced text, a task essential for numerous applications. Despite ongoing debate about the feasibility of such differentiation, we present evidence supporting its consistent achievability, except when human and machine text distributions are indistinguishable across their entire support. Drawing from information theory, we argue that as machine-generated text approximates human-like quality, the sample size needed for detection increases. We establish precise sample complexity bounds for detecting AI-generated text, laying groundwork for future research aimed at developing advanced, multi-sample detectors. Our empirical evaluations across multiple datasets (Xsum, Squad, IMDb, and Kaggle FakeNews) confirm the viability of enhanced detection methods. We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero. Our findings align with OpenAI's empirical data related to sequence length, marking the first theoretical substantiation for these observations.

We study universal traits which emerge both in real-world complex datasets, as well as in artificially generated ones. Our approach is to analogize data to a physical system and employ tools from statistical physics and Random Matrix Theory (RMT) to reveal their underlying structure. We focus on the feature-feature covariance matrix, analyzing both its local and global eigenvalue statistics. Our main observations are: (i) The power-law scalings that the bulk of its eigenvalues exhibit are vastly different for uncorrelated normally distributed data compared to real-world data, (ii) this scaling behavior can be completely modeled by generating gaussian data with long range correlations, (iii) both generated and real-world datasets lie in the same universality class from the RMT perspective, as chaotic rather than integrable systems, (iv) the expected RMT statistical behavior already manifests for empirical covariance matrices at dataset sizes significantly smaller than those conventionally used for real-world training, and can be related to the number of samples required to approximate the population power-law scaling behavior, (v) the Shannon entropy is correlated with local RMT structure and eigenvalues scaling, and substantially smaller in strongly correlated datasets compared to uncorrelated synthetic data, and requires fewer samples to reach the distribution entropy. These findings show that with sufficient sample size, the Gram matrix of natural image datasets can be well approximated by a Wishart random matrix with a simple covariance structure, opening the door to rigorous studies of neural network dynamics and generalization which rely on the data Gram matrix.

This paper performs the first study to understand the prevalence, challenges, and effectiveness of using Static Application Security Testing (SAST) tools on Open-Source Embedded Software (EMBOSS) repositories. We collect a corpus of 258 of the most popular EMBOSS projects, representing 13 distinct categories such as real-time operating systems, network stacks, and applications. To understand the current use of SAST tools on EMBOSS, we measured this corpus and surveyed developers. To understand the challenges and effectiveness of using SAST tools on EMBOSS projects, we applied these tools to the projects in our corpus. We report that almost none of these projects (just 3%) use SAST tools beyond those baked into the compiler, and developers give rationales such as ineffectiveness and false positives. In applying SAST tools ourselves, we show that minimal engineering effort and project expertise are needed to apply many tools to a given EMBOSS project. GitHub's CodeQL was the most effective SAST tool -- using its built-in security checks we found a total of 540 defects (with a false positive rate of 23%) across the 258 projects, with 399 (74%) likely security vulnerabilities, including in projects maintained by Microsoft, Amazon, and the Apache Foundation. EMBOSS engineers have confirmed 273 (51%) of these defects, mainly by accepting our pull requests. Two CVEs were issued. In summary, we urge EMBOSS engineers to adopt the current generation of SAST tools, which offer low false positive rates and are effective at finding security-relevant defects.

This paper presents a detailed evaluation of the efficiency of software-only techniques to mitigate SEU and SET in microprocessors. A set of well-known rules is presented and implemented automatically to transform an unprotected program into a hardened one. SEU and SET are injected in all sensitive areas of a MIPS-based microprocessor architecture. The efficiency of each rule and a combination of them are tested. Experimental results show the inefficiency of the control-flow techniques in detecting the majority of SEU and SET faults. Three effects of the non-detected faults are explained. The conclusions can lead designers in developing more efficient techniques to detect these types of faults.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司