In this paper, inspired by in the pervious published work in [Math. Program., 198 (2023), pp. 85-113] by Zamani and Hlad\'{\i}k, we focus on the error and perturbation bounds for the general absolute value equations because so far, to our knowledge, the error and perturbation bounds for the general absolute value equations are not discussed. In order to fill in this study gap, in this paper, by introducing a class of absolute value functions, we study the error bounds and perturbation bounds for two types of absolute value equations (AVEs): $Ax-B|x|=b$ and $Ax-|Bx|=b$. Some useful error bounds and perturbation bounds for the above two types of absolute value equations are presented. By applying the absolute value equations, we also obtain the error and perturbation bounds for the horizontal linear complementarity problem (HLCP). In addition, a new perturbation bound for the LCP without constraint conditions is given as well, which are weaker than the presented work in [SIAM J. Optim., 2007, 18: 1250-1265] in a way. Besides, without limiting the matrix type, some computable estimates for the above upper bounds are given, which are sharper than some existing results under certain conditions. Some numerical examples for the AVEs from the LCP are given to show the feasibility of the perturbation bounds.
In this paper, we focus on the perturbation analysis of the largest C-eigenvalue of the piezoelectric-type tensor which has concrete physical meaning which determines the highest piezoelectric coupling constant. Three perturbation bounds are presented, theoretical analysis and numerical examples show that the third perturbation bound has high accuracy when the norm of the perturbation tensor is small.
The traditional method of computing singular value decomposition (SVD) of a data matrix is based on a least squares principle, thus, is very sensitive to the presence of outliers. Hence the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination (e.g., video surveillance background modelling tasks, etc.). A robust singular value decomposition method using the minimum density power divergence estimator (rSVDdpd) has been found to provide a satisfactory solution to this problem and works well in applications. For example, it provides a neat solution to the background modelling problem of video surveillance data in the presence of camera tampering. In this paper, we investigate the theoretical properties of the rSVDdpd estimator such as convergence, equivariance and consistency under reasonable assumptions. Since the dimension of the parameters, i.e., the number of singular values and the dimension of singular vectors can grow linearly with the size of the data, the usual M-estimation theory has to be suitably modified with concentration bounds to establish the asymptotic properties. We believe that we have been able to accomplish this satisfactorily in the present work. We also demonstrate the efficiency of rSVDdpd through extensive simulations.
We adopt an information-theoretic framework to analyze the generalization behavior of the class of iterative, noisy learning algorithms. This class is particularly suitable for study under information-theoretic metrics as the algorithms are inherently randomized, and it includes commonly used algorithms such as Stochastic Gradient Langevin Dynamics (SGLD). Herein, we use the maximal leakage (equivalently, the Sibson mutual information of order infinity) metric, as it is simple to analyze, and it implies both bounds on the probability of having a large generalization error and on its expected value. We show that, if the update function (e.g., gradient) is bounded in $L_2$-norm and the additive noise is isotropic Gaussian noise, then one can obtain an upper-bound on maximal leakage in semi-closed form. Furthermore, we demonstrate how the assumptions on the update function affect the optimal (in the sense of minimizing the induced maximal leakage) choice of the noise. Finally, we compute explicit tight upper bounds on the induced maximal leakage for other scenarios of interest.
As causal ground truth is incredibly rare, causal discovery algorithms are commonly only evaluated on simulated data. This is concerning, given that simulations reflect common preconceptions about generating processes regarding noise distributions, model classes, and more. In this work, we propose a novel method for falsifying the output of a causal discovery algorithm in the absence of ground truth. Our key insight is that while statistical learning seeks stability across subsets of data points, causal learning should seek stability across subsets of variables. Motivated by this insight, our method relies on a notion of compatibility between causal graphs learned on different subsets of variables. We prove that detecting incompatibilities can falsify wrongly inferred causal relations due to violation of assumptions or errors from finite sample effects. Although passing such compatibility tests is only a necessary criterion for good performance, we argue that it provides strong evidence for the causal models whenever compatibility entails strong implications for the joint distribution. We also demonstrate experimentally that detection of incompatibilities can aid in causal model selection.
In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.
A power series being given as the solution of a linear differential equation with appropriate initial conditions, minimization consists in finding a non-trivial linear differential equation of minimal order having this power series as a solution. This problem exists in both homogeneous and inhomogeneous variants; it is distinct from, but related to, the classical problem of factorization of differential operators. Recently, minimization has found applications in Transcendental Number Theory, more specifically in the computation of non-zero algebraic points where Siegel's $E$-functions take algebraic values. We present algorithms and implementations for these questions, and discuss examples and experiments.
This paper is concerned with the designing, analyzing and implementing linear and nonlinear discretization scheme for the distributed optimal control problem (OCP) with the Cahn-Hilliard (CH) equation as constrained. We propose three difference schemes to approximate and investigate the solution behaviour of the OCP for the CH equation. We present the convergence analysis of the proposed discretization. We verify our findings by presenting numerical experiments.
We define the relative fractional independence number of two graphs, $G$ and $H$, as $$\alpha^*(G|H)=\max_{W}\frac{\alpha(G\boxtimes W)}{\alpha(H\boxtimes W)},$$ where the maximum is taken over all graphs $W$, $G\boxtimes W$ is the strong product of $G$ and $W$, and $\alpha$ denotes the independence number. We give a non-trivial linear program to compute $\alpha^*(G|H)$ and discuss some of its properties. We show that $$\alpha^*(G|H)\geq \frac{X(G)}{X(H)},$$ where $X(G)$ can be the independence number, the zero-error Shannon capacity, the fractional independence number, the Lov'{a}sz number, or the Schrijver's or Szegedy's variants of the Lov'{a}sz number of a graph $G$. This inequality is the first explicit non-trivial upper bound on the ratio of the invariants of two arbitrary graphs, as mentioned earlier, which can also be used to obtain upper or lower bounds for these invariants. As explicit applications, we present new upper bounds for the ratio of the zero-error Shannon capacity of two Cayley graphs and compute new lower bounds on the Shannon capacity of certain Johnson graphs (yielding the exact value of their Haemers number). Moreover, we show that the relative fractional independence number can be used to present a stronger version of the well-known No-Homomorphism Lemma. The No-Homomorphism Lemma is widely used to show the non-existence of a homomorphism between two graphs and is also used to give an upper bound on the independence number of a graph. Our extension of the No-Homomorphism Lemma is computationally more accessible than its original version.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.