亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Irregularly sampled time series forecasting, characterized by non-uniform intervals, is prevalent in practical applications. However, previous research have been focused on regular time series forecasting, typically relying on transformer architectures. To extend transformers to handle irregular time series, we tackle the positional embedding which represents the temporal information of the data. We propose CTLPE, a method learning a continuous linear function for encoding temporal information. The two challenges of irregular time series, inconsistent observation patterns and irregular time gaps, are solved by learning a continuous-time function and concise representation of position. Additionally, the linear continuous function is empirically shown superior to other continuous functions by learning a neural controlled differential equation-based positional embedding, and theoretically supported with properties of ideal positional embedding. CTLPE outperforms existing techniques across various irregularly-sampled time series datasets, showcasing its enhanced efficacy.

相關內容

Sampling from a multimodal distribution is a fundamental and challenging problem in computational science and statistics. Among various approaches proposed for this task, one popular method is Annealed Importance Sampling (AIS). In this paper, we propose an ensemble-based version of AIS by combining it with population-based Monte Carlo methods to improve its efficiency. By keeping track of an ensemble instead of a single particle along some continuation path between the starting distribution and the target distribution, we take advantage of the interaction within the ensemble to encourage the exploration of undiscovered modes. Specifically, our main idea is to utilize either the snooker algorithm or the genetic algorithm used in Evolutionary Monte Carlo. We discuss how the proposed algorithm can be implemented and derive a partial differential equation governing the evolution of the ensemble under the continuous time and mean-field limit. We also test the efficiency of the proposed algorithm on various continuous and discrete distributions.

Quantum computing introduces many problems rooted in physics, asking to compute information from input quantum states. Determining the complexity of these problems has implications for both computer science and physics. However, as existing complexity theory primarily addresses problems with classical inputs and outputs, it lacks the framework to fully capture the complexity of quantum-input problems. This gap is relevant when studying the relationship between quantum cryptography and complexity theory, especially within Impagliazzo's five worlds framework, as characterizing the security of quantum cryptographic primitives requires complexity classes for problems involving quantum inputs. To bridge this gap, we examine the complexity theory of quantum promise problems, which determine if input quantum states have certain properties. We focus on complexity classes p/mBQP, p/mQ(C)MA, $\mathrm{p/mQSZK_{hv}}$, p/mQIP, and p/mPSPACE, where "p/mC" denotes classes with pure (p) or mixed (m) states corresponding to any classical class C. We establish structural results, including complete problems, search-to-decision reductions, and relationships between classes. Notably, our findings reveal differences from classical counterparts, such as p/mQIP $\neq$ p/mPSPACE and $\mathrm{mcoQSZK_{hv}} \neq \mathrm{mQSZK_{hv}}$. As an application, we apply this framework to cryptography, showing that breaking one-way state generators, pseudorandom states, and EFI is bounded by mQCMA or $\mathrm{mQSZK_{hv}}$. We also show that the average-case hardness of $\mathrm{pQCZK_{hv}}$ implies the existence of EFI. These results provide new insights into Impagliazzo's worlds, establishing a connection between quantum cryptography and quantum promise complexity theory. We also extend our findings to quantum property testing and unitary synthesis, highlighting further applications of this new framework.

Self-supervised learning (SSL) offers a powerful way to learn robust, generalizable representations without labeled data. In music, where labeled data is scarce, existing SSL methods typically use generated supervision and multi-view redundancy to create pretext tasks. However, these approaches often produce entangled representations and lose view-specific information. We propose a novel self-supervised multi-view learning framework for audio designed to incentivize separation between private and shared representation spaces. A case study on audio disentanglement in a controlled setting demonstrates the effectiveness of our method.

In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which "masters" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.

We propose a new contrastive objective for learning overcomplete pixel-level features that are invariant to motion blur. Other invariances (e.g., pose, illumination, or weather) can be learned by applying the corresponding transformations on unlabeled images during self-supervised training. We showcase that a simple U-Net trained with our objective can produce local features useful for aligning the frames of an unseen video captured with a moving camera under realistic and challenging conditions. Using a carefully designed toy example, we also show that the overcomplete pixels can encode the identity of objects in an image and the pixel coordinates relative to these objects.

3D object detection is fundamentally important for various emerging applications, including autonomous driving and robotics. A key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data. Unfortunately, labeling point cloud data is extremely challenging, as accurate 3D bounding boxes and semantic labels are required for each potential object. This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors. Our framework is based on a novel formulation of submodular optimization, specifically tailored to the problem of active 3D object detection. In particular, we address two fundamental challenges associated with active 3D object detection: data imbalance and the need to cover the distribution of the data, including LiDAR-based point cloud data of varying difficulty levels. Extensive experiments demonstrate that our method achieves state-of-the-art performance with high computational efficiency compared to existing active learning methods. The code is available at //github.com/RuiyuM/STONE.

Many real-world applications of tabular data involve using historic events to predict properties of new ones, for example whether a credit card transaction is fraudulent or what rating a customer will assign a product on a retail platform. Existing approaches to event prediction include costly, brittle, and application-dependent techniques such as time-aware positional embeddings, learned row and field encodings, and oversampling methods for addressing class imbalance. Moreover, these approaches often assume specific use-cases, for example that we know the labels of all historic events or that we only predict a pre-specified label and not the data's features themselves. In this work, we propose a simple but flexible baseline using standard autoregressive LLM-style transformers with elementary positional embeddings and a causal language modeling objective. Our baseline outperforms existing approaches across popular datasets and can be employed for various use-cases. We demonstrate that the same model can predict labels, impute missing values, or model event sequences.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司