亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although a wide variety of handcrafted concurrent data structures have been proposed, there is considerable interest in universal approaches (henceforth called Universal Constructions or UCs) for building concurrent data structures. These approaches (semi-)automatically convert a sequential data structure into a concurrent one. The simplest approach uses locks that protect a sequential data structure and allow only one process to access it at a time. The resulting data structures use locks, and hence are blocking. Most work on UCs instead focuses on obtaining non-blocking progress guarantees such as obstruction-freedom, lock-freedom, or wait-freedom. Many non-blocking UCs have appeared. Key examples include the seminal wait-free UC by Herlihy, a NUMA-aware UC by Yi et al., and an efficient UC for large objects by Fatourou et al. We borrow ideas from persistent data structures and multi-version concurrency control (MVCC), most notably path copying, and use them to implement concurrent versions of sequential persistent data structures. Despite our expectation that our data structures would not scale under write-heavy workloads, they scale in practice. We confirm this scaling analytically in our model with private per-process caches.

相關內容

Procedural content generation (PCG) is a growing field, with numerous applications in the video game industry, and great potential to help create better games at a fraction of the cost of manual creation. However, much of the work in PCG is focused on generating relatively straightforward levels in simple games, as it is challenging to design an optimisable objective function for complex settings. This limits the applicability of PCG to more complex and modern titles, hindering its adoption in industry. Our work aims to address this limitation by introducing a compositional level generation method, which recursively composes simple, low-level generators together to construct large and complex creations. This approach allows for easily-optimisable objectives and the ability to design a complex structure in an interpretable way by referencing lower-level components. We empirically demonstrate that our method outperforms a non-compositional baseline by more accurately satisfying a designer's functional requirements in several tasks. Finally, we provide a qualitative showcase (in Minecraft) illustrating the large and complex, but still coherent, structures that were generated using simple base generators.

With humans interacting with AI-based systems at an increasing rate, it is necessary to ensure the artificial systems are acting in a manner which reflects understanding of the human. In the case of humans and artificial AI agents operating in the same environment, we note the significance of comprehension and response to the actions or capabilities of a human from an agent's perspective, as well as the possibility to delegate decisions either to humans or to agents, depending on who is deemed more suitable at a certain point in time. Such capabilities will ensure an improved responsiveness and utility of the entire human-AI system. To that end, we investigate the use of cognitively inspired models of behavior to predict the behavior of both human and AI agents. The predicted behavior, and associated performance with respect to a certain goal, is used to delegate control between humans and AI agents through the use of an intermediary entity. As we demonstrate, this allows overcoming potential shortcomings of either humans or agents in the pursuit of a goal.

Aggregate measures of family planning are used to monitor demand for and usage of contraceptive methods in populations globally, for example as part of the FP2030 initiative. Family planning measures for low- and middle-income countries are typically based on data collected through cross-sectional household surveys. Recently proposed measures account for sexual activity through assessment of the distribution of time-between-sex (TBS) in the population of interest. In this paper, we propose a statistical approach to estimate the distribution of TBS using data typically available in low- and middle-income countries, while addressing two major challenges. The first challenge is that timing of sex information is typically limited to women's time-since-last-sex (TSLS) data collected in the cross-sectional survey. In our proposed approach, we adopt the current duration method to estimate the distribution of TBS using the available TSLS data, from which the frequency of sex at the population level can be derived. Furthermore, the observed TSLS data are subject to reporting issues because they can be reported in different units and may be rounded off. To apply the current duration approach and account for these data reporting issues, we develop a flexible Bayesian model, and provide a detailed technical description of the proposed modeling approach.

Many real-world systems can be described by mathematical formulas that are human-comprehensible, easy to analyze and can be helpful in explaining the system's behaviour. Symbolic regression is a method that generates nonlinear models from data in the form of analytic expressions. Historically, symbolic regression has been predominantly realized using genetic programming, a method that iteratively evolves a population of candidate solutions that are sampled by genetic operators crossover and mutation. This gradient-free evolutionary approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data, models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the inner model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic formula, i.e., its structure as well as the coefficients, by means of gradient-based optimization algorithms. We propose a novel neural network-based symbolic regression method that constructs physically plausible models based on limited training data and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all models generated through the whole learning process. We experimentally evaluate the approach on the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the anti-lock braking system. The results clearly show the potential of the method to find sparse and accurate models that comply with the prior knowledge provided.

Using gradient descent (GD) with fixed or decaying step-size is a standard practice in unconstrained optimization problems. However, when the loss function is only locally convex, such a step-size schedule artificially slows GD down as it cannot explore the flat curvature of the loss function. To overcome that issue, we propose to exponentially increase the step-size of the GD algorithm. Under homogeneous assumptions on the loss function, we demonstrate that the iterates of the proposed \emph{exponential step size gradient descent} (EGD) algorithm converge linearly to the optimal solution. Leveraging that optimization insight, we then consider using the EGD algorithm for solving parameter estimation under both regular and non-regular statistical models whose loss function becomes locally convex when the sample size goes to infinity. We demonstrate that the EGD iterates reach the final statistical radius within the true parameter after a logarithmic number of iterations, which is in stark contrast to a \emph{polynomial} number of iterations of the GD algorithm in non-regular statistical models. Therefore, the total computational complexity of the EGD algorithm is \emph{optimal} and exponentially cheaper than that of the GD for solving parameter estimation in non-regular statistical models while being comparable to that of the GD in regular statistical settings. To the best of our knowledge, it resolves a long-standing gap between statistical and algorithmic computational complexities of parameter estimation in non-regular statistical models. Finally, we provide targeted applications of the general theory to several classes of statistical models, including generalized linear models with polynomial link functions and location Gaussian mixture models.

In this paper, we consider a bandit problem in which there are a number of groups each consisting of infinitely many arms. Whenever a new arm is requested from a given group, its mean reward is drawn from an unknown reservoir distribution (different for each group), and the uncertainty in the arm's mean reward can only be reduced via subsequent pulls of the arm. The goal is to identify the infinite-arm group whose reservoir distribution has the highest $(1-\alpha)$-quantile (e.g., median if $\alpha = \frac{1}{2}$), using as few total arm pulls as possible. We introduce a two-step algorithm that first requests a fixed number of arms from each group and then runs a finite-arm grouped max-quantile bandit algorithm. We characterize both the instance-dependent and worst-case regret, and provide a matching lower bound for the latter, while discussing various strengths, weaknesses, algorithmic improvements, and potential lower bounds associated with our instance-dependent upper bounds.

How can one visually characterize people in a decade? In this work, we assemble the Faces Through Time dataset, which contains over a thousand portrait images from each decade, spanning the 1880s to the present day. Using our new dataset, we present a framework for resynthesizing portrait images across time, imagining how a portrait taken during a particular decade might have looked like, had it been taken in other decades. Our framework optimizes a family of per-decade generators that reveal subtle changes that differentiate decade--such as different hairstyles or makeup--while maintaining the identity of the input portrait. Experiments show that our method is more effective in resynthesizing portraits across time compared to state-of-the-art image-to-image translation methods, as well as attribute-based and language-guided portrait editing models. Our code and data will be available at //facesthroughtime.github.io

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

北京阿比特科技有限公司