亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Onion routing and mix networks are fundamental concepts to provide users with anonymous access to the Internet. Various corresponding solutions rely on the efficient Sphinx packet format. However, flaws in Sphinx's underlying proof strategy were found recently. It is thus currently unclear which guarantees Sphinx actually provides, and, even worse, there is no suitable proof strategy available. In this paper, we restore the security foundation for all these works by building a theoretical framework for Sphinx. We discover that the previously-used DDH assumption is insufficient for a security proof and show that the Gap Diffie-Hellman (GDH) assumption is required instead. We apply it to prove that a slightly adapted version of the Sphinx packet format is secure under the GDH assumption. Ours is the first work to provide a detailed, in-depth security proof for Sphinx in this manner. Our adaptations to Sphinx are necessary, as we demonstrate with an attack on sender privacy that would be possible otherwise.

相關內容

開源的高性能全文檢索引擎,基于C++開發。

With the booming popularity of smartphones, threats related to these devices are increasingly on the rise. Smishing, a combination of SMS (Short Message Service) and phishing has emerged as a treacherous cyber threat used by malicious actors to deceive users, aiming to steal sensitive information, money or install malware on their mobile devices. Despite the increase in smishing attacks in recent years, there are very few studies aimed at understanding the factors that contribute to a user's ability to differentiate real from fake messages. To address this gap in knowledge, we have conducted an online survey on smishing detection with 214 participants. In this study, we presented them with 16 SMS screenshots and evaluated how different factors affect their decision making process in smishing detection. Next, we conducted a follow-up survey to garner information on the participants' security attitudes, behavior and knowledge. Our results highlighted that attention and security behavioral scores had a significant impact on participants' accuracy in identifying smishing messages. Interestingly, we found that participants had more difficulty identifying real messages from fake ones, with an accuracy of 65.6% with fake messages and 44.6% with real messages. Our study is crucial in developing proactive strategies to encounter and mitigate smishing attacks. By understanding what factors influence smishing detection, we aim to bolster users' resilience against such threats and create a safer digital environment for all.

Many problems in robotics involve creating or breaking multiple contacts nearly simultaneously or in an indeterminate order. We present a novel general purpose numerical integrator based on the theory of Event Selected Systems (ESS). Many multicontact models are ESS, which has recently been shown to imply that despite a discontinuous vector field, the flow of these systems is continuous, piecewise smooth, and has a well defined orbital derivative for all trajectories, which can be rapidly computed. We provide an elementary proof that our integrator is first-order accurate and verify numerically that it is in fact second-order accurate as its construction anticipated. We also compare our integrator, implemented in NumPy, to a MuJoCo simulation on models with 2 to 100 contacts, and confirm that the increase in simulation time per contact is nearly identical. The results suggest that this novel integrator can be invaluable for modelling and control in many robotics applications.

In Natural Language Processing, entity linking (EL) has centered around Wikipedia, but yet remains underexplored for the job market domain. Disambiguating skill mentions can help us get insight into the current labor market demands. In this work, we are the first to explore EL in this domain, specifically targeting the linkage of occupational skills to the ESCO taxonomy (le Vrang et al., 2014). Previous efforts linked coarse-grained (full) sentences to a corresponding ESCO skill. In this work, we link more fine-grained span-level mentions of skills. We tune two high-performing neural EL models, a bi-encoder (Wu et al., 2020) and an autoregressive model (Cao et al., 2021), on a synthetically generated mention--skill pair dataset and evaluate them on a human-annotated skill-linking benchmark. Our findings reveal that both models are capable of linking implicit mentions of skills to their correct taxonomy counterparts. Empirically, BLINK outperforms GENRE in strict evaluation, but GENRE performs better in loose evaluation (accuracy@$k$).

The number of Language Models (LMs) dedicated to processing scientific text is on the rise. Keeping pace with the rapid growth of scientific LMs (SciLMs) has become a daunting task for researchers. To date, no comprehensive surveys on SciLMs have been undertaken, leaving this issue unaddressed. Given the constant stream of new SciLMs, appraising the state-of-the-art and how they compare to each other remain largely unknown. This work fills that gap and provides a comprehensive review of SciLMs, including an extensive analysis of their effectiveness across different domains, tasks and datasets, and a discussion on the challenges that lie ahead.

Despite the Internet's continued growth, it increasingly depends on a small set of service providers to support Domain Name System (DNS) and web content hosting. This trend poses many potential threats including susceptibility to outages, failures, and potential censorship by providers. This paper aims to quantify consolidation in terms of popular domains' reliance on a small set of organizations for both DNS and web hosting. We highlight the extent to which a set of relatively few platforms host the authoritative name servers and web content for the top million websites. Our results show that both DNS and web hosting are concentrated, with Cloudflare and Amazon hosting over $30\%$ of the domains for both services. With the addition of Akamai, Fastly, and Google, these five organizations host $60\%$ of index pages in the Tranco top 10K, as well as the majority of external page resources. These trends are consistent across six different global vantage points, indicating that consolidation is happening globally and popular organizations can influence users' online experience across the world.

Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司