亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A key goal of the System-Theoretic Process Analysis (STPA) hazard analysis technique is the identification of loss scenarios - causal factors that could potentially lead to an accident. We propose an approach that aims to assist engineers in identifying potential loss scenarios that are associated with flawed assumptions about a system's intended operational environment. Our approach combines aspects of STPA with formal modelling and simulation. Currently, we are at a proof-of-concept stage and illustrate the approach using a case study based upon a simple car door locking system. In terms of the formal modelling, we use Extended Logic Programming (ELP) and on the simulation side, we use the CARLA simulator for autonomous driving. We make use of the problem frames approach to requirements engineering to bridge between the informal aspects of STPA and our formal modelling.

相關內容

Cyber-Physical Systems (CPSs), comprising both software and physical components, arise in many industry-relevant domains and are often mission- or safety-critical. System-Level Verification (SLV) of CPSs aims at certifying that given (e.g., safety or liveness) specifications are met, or at estimating the value of some KPIs, when the system runs in its operational environment, i.e., in presence of inputs (from users or other systems) and/or of additional, uncontrolled disturbances. To enable SLV of complex systems from the early design phases, the currently most adopted approach envisions the simulation of a system model under the (time bounded) operational scenarios of interest. Simulation-based SLV can be computationally prohibitive (years of sequential simulation), since model simulation is computationally intensive and the set of scenarios of interest can huge. We present a technique that, given a collection of scenarios of interest (extracted from mass-storage databases or from symbolic structures, e.g., constraint-based scenario generators), computes parallel shortest simulation campaigns, which drive a possibly large number of system model simulators running in parallel in a HPC infrastructure through all (and only) those scenarios in the user-defined (possibly random) order, by wisely avoiding multiple simulations of repeated trajectories, thus minimising the overall completion time, compatibly with the available simulator memory capacity. Our experiments on Modelica/FMU and Simulink case study models with up to ~200 million scenarios show that our optimisation yields speedups as high as 8x. This, together with the enabled massive parallelisation, makes practically viable (a few weeks in a HPC infrastructure) verification tasks (both statistical and exhaustive, with respect to the given set of scenarios) which would otherwise take inconceivably long time.

This paper investigates the reconfigurable intelligent surface (RIS) assisted spatial scattering modulation (SSM) scheme for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems, in which line-of-sight (LoS) and non-line-of-sight (NLoS) paths are respectively considered in the transmitter-RIS and RIS-receiver channels. Based on the maximum likelihood detector, the conditional pairwise error probability (CPEP) expression for the RIS-SSM scheme is derived under the two cases of received beam correct and demodulation error. Furthermore, we derive the closed-form expressions of the unconditional pairwise error probability (UPEP) by employing two different methods: the probability density function and the moment-generating function expressions with a descending order of scatterer gains. To provide more useful insights, we derive the asymptotic UPEP and the diversity gain of the RIS-SSM scheme in the high SNR region. Depending on UPEP and the corresponding Euclidean distance, we get the union upper bound of the average bit error probability (ABEP). A new framework for ergodic capacity analysis is also provided to acquire the proposed system's effective capacity. Finally, all derivation results are validated via extensive Monte Carlo simulations, revealing that the proposed RIS-SSM scheme outperforms the benchmarks in terms of reliability.

Neuromorphic visual sensors are artificial retinas that output sequences of asynchronous events when brightness changes occur in the scene. These sensors offer many advantages including very high temporal resolution, no motion blur and smart data compression ideal for real-time processing. In this study, we introduce an event-based dataset on fine-grained manipulation actions and perform an experimental study on the use of transformers for action prediction with events. There is enormous interest in the fields of cognitive robotics and human-robot interaction on understanding and predicting human actions as early as possible. Early prediction allows anticipating complex stages for planning, enabling effective and real-time interaction. Our Transformer network uses events to predict manipulation actions as they occur, using online inference. The model succeeds at predicting actions early on, building up confidence over time and achieving state-of-the-art classification. Moreover, the attention-based transformer architecture allows us to study the role of the spatio-temporal patterns selected by the model. Our experiments show that the Transformer network captures action dynamic features outperforming video-based approaches and succeeding with scenarios where the differences between actions lie in very subtle cues. Finally, we release the new event dataset, which is the first in the literature for manipulation action recognition. Code will be available at //github.com/DaniDeniz/EventVisionTransformer.

State-of-the-art object detection and segmentation methods for microscopy images rely on supervised machine learning, which requires laborious manual annotation of training data. Here we present a self-supervised method based on time arrow prediction pre-training that learns dense image representations from raw, unlabeled live-cell microscopy videos. Our method builds upon the task of predicting the correct order of time-flipped image regions via a single-image feature extractor followed by a time arrow prediction head that operates on the fused features. We show that the resulting dense representations capture inherently time-asymmetric biological processes such as cell divisions on a pixel-level. We furthermore demonstrate the utility of these representations on several live-cell microscopy datasets for detection and segmentation of dividing cells, as well as for cell state classification. Our method outperforms supervised methods, particularly when only limited ground truth annotations are available as is commonly the case in practice. We provide code at //github.com/weigertlab/tarrow.

The dynamic vehicle routing problem with time windows (DVRPTW) is a generalization of the classical VRPTW to an online setting, where customer data arrives in batches and real-time routing solutions are required. In this paper we adapt the Hybrid Genetic Search (HGS) algorithm, a successful heuristic for VRPTW, to the dynamic variant. We discuss the affected components of the HGS algorithm including giant-tour representation, cost computation, initial population, crossover, and local search. Our approach modifies these components for DVRPTW, attempting to balance solution quality and constraints on future customer arrivals. To this end, we devise methods for comparing different-sized solutions, normalizing costs, and accounting for future epochs that do not require any prior training. Despite this limitation, computational results on data from the EURO meets NeurIPS Vehicle Routing Competition 2022 demonstrate significantly improved solution quality over the best-performing baseline algorithm.

Generative Adversarial Networks (GAN) have emerged as a formidable AI tool to generate realistic outputs based on training datasets. However, the challenge of exerting control over the generation process of GANs remains a significant hurdle. In this paper, we propose a novel methodology to address this issue by integrating a reinforcement learning (RL) agent with a latent-space GAN (l-GAN), thereby facilitating the generation of desired outputs. More specifically, we have developed an actor-critic RL agent with a meticulously designed reward policy, enabling it to acquire proficiency in navigating the latent space of the l-GAN and generating outputs based on specified tasks. To substantiate the efficacy of our approach, we have conducted a series of experiments employing the MNIST dataset, including arithmetic addition as an illustrative task. The outcomes of these experiments serve to validate our methodology. Our pioneering integration of an RL agent with a GAN model represents a novel advancement, holding great potential for enhancing generative networks in the future.

Over the past decades, hemodynamics simulators have steadily evolved and have become tools of choice for studying cardiovascular systems in-silico. While such tools are routinely used to simulate whole-body hemodynamics from physiological parameters, solving the corresponding inverse problem of mapping waveforms back to plausible physiological parameters remains both promising and challenging. Motivated by advances in simulation-based inference (SBI), we cast this inverse problem as statistical inference. In contrast to alternative approaches, SBI provides \textit{posterior distributions} for the parameters of interest, providing a \textit{multi-dimensional} representation of uncertainty for \textit{individual} measurements. We showcase this ability by performing an in-silico uncertainty analysis of five biomarkers of clinical interest comparing several measurement modalities. Beyond the corroboration of known facts, such as the feasibility of estimating heart rate, our study highlights the potential of estimating new biomarkers from standard-of-care measurements. SBI reveals practically relevant findings that cannot be captured by standard sensitivity analyses, such as the existence of sub-populations for which parameter estimation exhibits distinct uncertainty regimes. Finally, we study the gap between in-vivo and in-silico with the MIMIC-III waveform database and critically discuss how cardiovascular simulations can inform real-world data analysis.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

北京阿比特科技有限公司