[retracted] We found out that the difference was dependent on the Chainer library, and does not replicate with another library (pytorch) which indicates that the results are probably due to a bug in Chainer, rather than being hardware-dependent. -- old abstract Deep neural networks often present uncertainties such as hardware- and software-derived noise and randomness. We studied the effects of such uncertainty on learning outcomes, with a particular focus on the function of graphics processing units (GPUs), and found that GPU-induced uncertainty increased learning accuracy of a certain deep neural network. When training a predictive deep neural network using only the CPU without the GPU, the learning error is higher than when training the same number of epochs using the GPU, suggesting that the GPU plays a different role in the learning process than just increasing the computational speed. Because this effect cannot be observed in learning by a simple autoencoder, it could be a phenomenon specific to certain types of neural networks. GPU-specific computational processing is more indeterminate than that by CPUs, and hardware-derived uncertainties, which are often considered obstacles that need to be eliminated, might, in some cases, be successfully incorporated into the training of deep neural networks. Moreover, such uncertainties might be interesting phenomena to consider in brain-related computational processing, which comprises a large mass of uncertain signals.
Deep Neural Networks are able to solve many complex tasks with less engineering effort and better performance. However, these networks often use data for training and evaluation without investigating its representation, i.e.~the form of the used data. In the present paper, we analyze the impact of data representations on the performance of Deep Neural Networks using energy time series forecasting. Based on an overview of exemplary data representations, we select four exemplary data representations and evaluate them using two different Deep Neural Network architectures and three forecasting horizons on real-world energy time series. The results show that, depending on the forecast horizon, the same data representations can have a positive or negative impact on the accuracy of Deep Neural Networks.
Dynamic replication is a wide-spread multi-copy routing approach for efficiently coping with the intermittent connectivity in mobile opportunistic networks. According to it, a node forwards a message replica to an encountered node based on a utility value that captures the latter's fitness for delivering the message to the destination. The popularity of the approach stems from its flexibility to effectively operate in networks with diverse characteristics without requiring special customization. Nonetheless, its drawback is the tendency to produce a high number of replicas that consume limited resources such as energy and storage. To tackle the problem we make the observation that network nodes can be grouped, based on their utility values, into clusters that portray different delivery capabilities. We exploit this finding to transform the basic forwarding strategy, which is to move a packet using nodes of increasing utility, and actually forward it through clusters of increasing delivery capability. The new strategy works in synergy with the basic dynamic replication algorithms and is fully configurable, in the sense that it can be used with virtually any utility function. We also extend our approach to work with two utility functions at the same time, a feature that is especially efficient in mobile networks that exhibit social characteristics. By conducting experiments in a wide set of real-life networks, we empirically show that our method is robust in reducing the overall number of replicas in networks with diverse connectivity characteristics without at the same time hindering delivery efficiency.
There is an increasing convergence between biologically plausible computational models of inference and learning with local update rules and the global gradient-based optimization of neural network models employed in machine learning. One particularly exciting connection is the correspondence between the locally informed optimization in predictive coding networks and the error backpropagation algorithm that is used to train state-of-the-art deep artificial neural networks. Here we focus on the related, but still largely under-explored connection between precision weighting in predictive coding networks and the Natural Gradient Descent algorithm for deep neural networks. Precision-weighted predictive coding is an interesting candidate for scaling up uncertainty-aware optimization -- particularly for models with large parameter spaces -- due to its distributed nature of the optimization process and the underlying local approximation of the Fisher information metric, the adaptive learning rate that is central to Natural Gradient Descent. Here, we show that hierarchical predictive coding networks with learnable precision indeed are able to solve various supervised and unsupervised learning tasks with performance comparable to global backpropagation with natural gradients and outperform their classical gradient descent counterpart on tasks where high amounts of noise are embedded in data or label inputs. When applied to unsupervised auto-encoding of image inputs, the deterministic network produces hierarchically organized and disentangled embeddings, hinting at the close connections between predictive coding and hierarchical variational inference.
Neural networks have proven to be remarkably successful for a wide range of complicated tasks, from image recognition and object detection to speech recognition and machine translation. One of their successes is the skill in prediction of future dynamics given a suitable training set of data. Previous studies have shown how Echo State Networks (ESNs), a subset of Recurrent Neural Networks, can successfully predict even chaotic systems for times longer than the Lyapunov time. This study shows that, remarkably, ESNs can successfully predict dynamical behavior that is qualitatively different from any behavior contained in the training set. Evidence is provided for a fluid dynamics problem where the flow can transition between laminar (ordered) and turbulent (disordered) regimes. Despite being trained on the turbulent regime only, ESNs are found to predict laminar behavior. Moreover, the statistics of turbulent-to-laminar and laminar-to-turbulent transitions are also predicted successfully, and the utility of ESNs in acting as an early-warning system for transition is discussed. These results are expected to be widely applicable to data-driven modelling of temporal behaviour in a range of physical, climate, biological, ecological and finance models characterized by the presence of tipping points and sudden transitions between several competing states.
Deep learning has been successful in automating the design of features in machine learning pipelines. However, the algorithms optimizing neural network parameters remain largely hand-designed and computationally inefficient. We study if we can use deep learning to directly predict these parameters by exploiting the past knowledge of training other networks. We introduce a large-scale dataset of diverse computational graphs of neural architectures - DeepNets-1M - and use it to explore parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph neural networks, we propose a hypernetwork that can predict performant parameters in a single forward pass taking a fraction of a second, even on a CPU. The proposed model achieves surprisingly good performance on unseen and diverse networks. For example, it is able to predict all 24 million parameters of a ResNet-50 achieving a 60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks approaches 50%. Our task along with the model and results can potentially lead to a new, more computationally efficient paradigm of training networks. Our model also learns a strong representation of neural architectures enabling their analysis.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
We present a new approach for pretraining a bi-directional transformer model that provides significant performance gains across a variety of language understanding problems. Our model solves a cloze-style word reconstruction task, where each word is ablated and must be predicted given the rest of the text. Experiments demonstrate large performance gains on GLUE and new state of the art results on NER as well as constituency parsing benchmarks, consistent with the concurrently introduced BERT model. We also present a detailed analysis of a number of factors that contribute to effective pretraining, including data domain and size, model capacity, and variations on the cloze objective.
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.
Recent years have witnessed significant progresses in deep Reinforcement Learning (RL). Empowered with large scale neural networks, carefully designed architectures, novel training algorithms and massively parallel computing devices, researchers are able to attack many challenging RL problems. However, in machine learning, more training power comes with a potential risk of more overfitting. As deep RL techniques are being applied to critical problems such as healthcare and finance, it is important to understand the generalization behaviors of the trained agents. In this paper, we conduct a systematic study of standard RL agents and find that they could overfit in various ways. Moreover, overfitting could happen "robustly": commonly used techniques in RL that add stochasticity do not necessarily prevent or detect overfitting. In particular, the same agents and learning algorithms could have drastically different test performance, even when all of them achieve optimal rewards during training. The observations call for more principled and careful evaluation protocols in RL. We conclude with a general discussion on overfitting in RL and a study of the generalization behaviors from the perspective of inductive bias.
Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples.