Safety assessment of crash and conflict avoidance systems is important for both the automotive industry and other stakeholders. One type of system that needs such an assessment is a driver monitoring system (DMS) with some intervention (e.g., warning or nudging) when the driver looks off-road for too long. Although using computer simulation to assess safety systems is becoming increasingly common, it is not yet commonly used for systems that affect driver behavior, such as DMSs. Models that generate virtual crashes, taking crash-causation mechanisms into account, are needed to assess these systems. However, few such models exist, and those that do have not been thoroughly validated on real-world data. This study aims to address this research gap by validating a rear-end crash-causation model which is based on four crash-causation mechanisms related to driver behavior: a) off-road glances, b) too-short headway, c) not braking with the maximum deceleration possible, and d) sleepiness (not reacting before the crash). The pre-crash kinematics were obtained from the German GIDAS in-depth crash database. Challenges with the validation process were identified and addressed. Most notably, a process was developed to transform the generated crashes to mimic the crash severity distribution in GIDAS. This step was necessary because GIDAS does not include property-damage-only (PDO) crashes, while the generated crashes cover the full range of severities (including low-severity crashes, of which many are PDOs). Our results indicate that the proposed model is a reasonably good crash generator. We further demonstrated that the model is a valid method for assessing DMSs in virtual simulations; it shows the safety impact of shorter "longest" off-road glances. As expected, cutting away long off-road glances substantially reduces the number of crashes that occur and reduces the average delta-v.
In order to clear the world of the threat posed by landmines and other explosive devices, robotic systems can play an important role. However, the development of such field robots that need to operate in hazardous conditions requires the careful consideration of multiple aspects related to the perception, mobility, and collaboration capabilities of the system. In the framework of a European challenge, the Artificial Intelligence for Detection of Explosive Devices - eXtended (AIDEDeX) project proposes to design a heterogeneous multi-robot system with advanced sensor fusion algorithms. This system is specifically designed to detect and classify improvised explosive devices, explosive ordnances, and landmines. This project integrates specialised sensors, including electromagnetic induction, ground penetrating radar, X-Ray backscatter imaging, Raman spectrometers, and multimodal cameras, to achieve comprehensive threat identification and localisation. The proposed system comprises a fleet of unmanned ground vehicles and unmanned aerial vehicles. This article details the operational phases of the AIDEDeX system, from rapid terrain exploration using unmanned aerial vehicles to specialised detection and classification by unmanned ground vehicles equipped with a robotic manipulator. Initially focusing on a centralised approach, the project will also explore the potential of a decentralised control architecture, taking inspiration from swarm robotics to provide a robust, adaptable, and scalable solution for explosive detection.
We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly log-concave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.
Test-negative designs are widely used for post-market evaluation of vaccine effectiveness, particularly in cases where randomization is not feasible. Differing from classical test-negative designs where only healthcare-seekers with symptoms are included, recent test-negative designs have involved individuals with various reasons for testing, especially in an outbreak setting. While including these data can increase sample size and hence improve precision, concerns have been raised about whether they introduce bias into the current framework of test-negative designs, thereby demanding a formal statistical examination of this modified design. In this article, using statistical derivations, causal graphs, and numerical simulations, we show that the standard odds ratio estimator may be biased if various reasons for testing are not accounted for. To eliminate this bias, we identify three categories of reasons for testing, including symptoms, disease-unrelated reasons, and case contact tracing, and characterize associated statistical properties and estimands. Based on our characterization, we show how to consistently estimate each estimand via stratification. Furthermore, we describe when these estimands correspond to the same vaccine effectiveness parameter, and, when appropriate, propose a stratified estimator that can incorporate multiple reasons for testing and improve precision. The performance of our proposed method is demonstrated through simulation studies.
Cross-validation is usually employed to evaluate the performance of a given statistical methodology. When such a methodology depends on a number of tuning parameters, cross-validation proves to be helpful to select the parameters that optimize the estimated performance. In this paper, however, a very different and nonstandard use of cross-validation is investigated. Instead of focusing on the cross-validated parameters, the main interest is switched to the estimated value of the error criterion at optimal performance. It is shown that this approach is able to provide consistent and efficient estimates of some density functionals, with the noteworthy feature that these estimates do not rely on the choice of any further tuning parameter, so that, in that sense, they can be considered to be purely empirical. Here, a base case of application of this new paradigm is developed in full detail, while many other possible extensions are hinted as well.
Heterogeneous treatment effects are driven by treatment effect modifiers, pre-treatment covariates that modify the effect of a treatment on an outcome. Current approaches for uncovering these variables are limited to low-dimensional data, data with weakly correlated covariates, or data generated according to parametric processes. We resolve these issues by developing a framework for defining model-agnostic treatment effect modifier variable importance parameters applicable to high-dimensional data with arbitrary correlation structure, deriving one-step, estimating equation and targeted maximum likelihood estimators of these parameters, and establishing these estimators' asymptotic properties. This framework is showcased by defining variable importance parameters for data-generating processes with continuous, binary, and time-to-event outcomes with binary treatments, and deriving accompanying multiply-robust and asymptotically linear estimators. Simulation experiments demonstrate that these estimators' asymptotic guarantees are approximately achieved in realistic sample sizes for observational and randomized studies alike. This framework is applied to gene expression data collected for a clinical trial assessing the effect of a monoclonal antibody therapy on disease-free survival in breast cancer patients. Genes predicted to have the greatest potential for treatment effect modification have previously been linked to breast cancer. An open-source R package implementing this methodology, unihtee, is made available on GitHub at //github.com/insightsengineering/unihtee.
We consider continuous-time survival or more general event-history settings, where the aim is to infer the causal effect of a time-dependent treatment process. This is formalised as the effect on the outcome event of a (possibly hypothetical) intervention on the intensity of the treatment process, i.e. a stochastic intervention. To establish whether valid inference about the interventional situation can be drawn from typical observational, i.e. non-experimental, data we propose graphical rules indicating whether the observed information is sufficient to identify the desired causal effect by suitable re-weighting. In analogy to the well-known causal directed acyclic graphs, the corresponding dynamic graphs combine causal semantics with local independence models for multivariate counting processes. Importantly, we highlight that causal inference from censored data requires structural assumptions on the censoring process beyond the usual independent censoring assumption, which can be represented and verified graphically. Our results establish general non-parametric identifiability and do not rely on particular survival models. We illustrate our proposal with a data example on HPV-testing for cervical cancer screening, where the desired effect is estimated by re-weighted cumulative incidence curves.
Most of the current studies on autonomous vehicle decision-making and control tasks based on reinforcement learning are conducted in simulated environments. The training and testing of these studies are carried out under rule-based microscopic traffic flow, with little consideration of migrating them to real or near-real environments to test their performance. It may lead to a degradation in performance when the trained model is tested in more realistic traffic scenes. In this study, we propose a method to randomize the driving style and behavior of surrounding vehicles by randomizing certain parameters of the car-following model and the lane-changing model of rule-based microscopic traffic flow in SUMO. We trained policies with deep reinforcement learning algorithms under the domain randomized rule-based microscopic traffic flow in freeway and merging scenes, and then tested them separately in rule-based microscopic traffic flow and high-fidelity microscopic traffic flow. Results indicate that the policy trained under domain randomization traffic flow has significantly better success rate and calculative reward compared to the models trained under other microscopic traffic flows.
Any interactive protocol between a pair of parties can be reliably simulated in the presence of noise with a multiplicative overhead on the number of rounds (Schulman 1996). The reciprocal of the best (least) overhead is called the interactive capacity of the noisy channel. In this work, we present lower bounds on the interactive capacity of the binary erasure channel. Our lower bound improves the best known bound due to Ben-Yishai et al. 2021 by roughly a factor of 1.75. The improvement is due to a tighter analysis of the correctness of the simulation protocol using error pattern analysis. More precisely, instead of using the well-known technique of bounding the least number of erasures needed to make the simulation fail, we identify and bound the probability of specific erasure patterns causing simulation failure. We remark that error pattern analysis can be useful in solving other problems involving stochastic noise, such as bounding the interactive capacity of different channels.
Model predictive control (MPC) for linear systems with quadratic costs and linear constraints is shown to admit an exact representation as an implicit neural network. A method to "unravel" the implicit neural network of MPC into an explicit one is also introduced. As well as building links between model-based and data-driven control, these results emphasize the capability of implicit neural networks for representing solutions of optimisation problems, as such problems are themselves implicitly defined functions.
Software is a central part of modern science, and knowledge of its use is crucial for the scientific community with respect to reproducibility and attribution of its developers. Several studies have investigated in-text mentions of software and its quality, while the quality of formal software citations has only been analyzed superficially. This study performs an in-depth evaluation of formal software citation based on a set of manually annotated software references. It examines which resources are cited for software usage, to what extend they allow proper identification of software and its specific version, how this information is made available by scientific publishers, and how well it is represented in large-scale bibliographic databases. The results show that software articles are the most cited resource for software, while direct software citations are better suited for identification of software versions. Moreover, we found current practices by both, publishers and bibliographic databases, to be unsuited to represent these direct software citations, hindering large-scale analyses such as assessing software impact. We argue that current practices for representing software citations -- the recommended way to cite software by current citation standards -- stand in the way of their adaption by the scientific community, and urge providers of bibliographic data to explicitly model scientific software.