亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Real-world optimisation problems often feature complex combinations of (1) diverse constraints, (2) discrete and mixed spaces, and are (3) highly parallelisable. (4) There are also cases where the objective function cannot be queried if unknown constraints are not satisfied, e.g. in drug discovery, safety on animal experiments (unknown constraints) must be established before human clinical trials (querying objective function) may proceed. However, most existing works target each of the above three problems in isolation and do not consider (4) unknown constraints with query rejection. For problems with diverse constraints and/or unconventional input spaces, it is difficult to apply these techniques as they are often mutually incompatible. We propose cSOBER, a domain-agnostic prudent parallel active sampler for Bayesian optimisation, based on SOBER of Adachi et al. (2023). We consider infeasibility under unknown constraints as a type of integration error that we can estimate. We propose a theoretically-driven approach that propagates such error as a tolerance in the quadrature precision that automatically balances exploitation and exploration with the expected rejection rate. Moreover, our method flexibly accommodates diverse constraints and/or discrete and mixed spaces via adaptive tolerance, including conventional zero-risk cases. We show that cSOBER outperforms competitive baselines on diverse real-world blackbox-constrained problems, including safety-constrained drug discovery, and human-relationship-aware team optimisation over graph-structured space.

相關內容

Robot teleoperation gains great success in various situations, including chemical pollution rescue, disaster relief, and long-distance manipulation. In this article, we propose a virtual reality (VR) based robot teleoperation system to achieve more efficient and natural interaction with humans in different scenes. A user-friendly VR interface is designed to help users interact with a desktop scene using their hands efficiently and intuitively. To improve user experience and reduce workload, we simulate the process in the physics engine to help build a preview of the scene after manipulation in the virtual scene before execution. We conduct experiments with different users and compare our system with a direct control method across several teleoperation tasks. The user study demonstrates that the proposed system enables users to perform operations more instinctively with a lighter mental workload. Users can perform pick-and-place and object-stacking tasks in a considerably short time, even for beginners. Our code is available at //github.com/lingxiaomeng/VR_Teleoperation_Gen3.

Complex scenario of ultrasound image, in which adjacent tissues (i.e., background) share similar intensity with and even contain richer texture patterns than lesion region (i.e., foreground), brings a unique challenge for accurate lesion segmentation. This work presents a decomposition-coupling network, called DC-Net, to deal with this challenge in a (foreground-background) saliency map disentanglement-fusion manner. The DC-Net consists of decomposition and coupling subnets, and the former preliminarily disentangles original image into foreground and background saliency maps, followed by the latter for accurate segmentation under the assistance of saliency prior fusion. The coupling subnet involves three aspects of fusion strategies, including: 1) regional feature aggregation (via differentiable context pooling operator in the encoder) to adaptively preserve local contextual details with the larger receptive field during dimension reduction; 2) relation-aware representation fusion (via cross-correlation fusion module in the decoder) to efficiently fuse low-level visual characteristics and high-level semantic features during resolution restoration; 3) dependency-aware prior incorporation (via coupler) to reinforce foreground-salient representation with the complementary information derived from background representation. Furthermore, a harmonic loss function is introduced to encourage the network to focus more attention on low-confidence and hard samples. The proposed method is evaluated on two ultrasound lesion segmentation tasks, which demonstrates the remarkable performance improvement over existing state-of-the-art methods.

Face rendering using neural radiance fields (NeRF) is a rapidly developing research area in computer vision. While recent methods primarily focus on controlling facial attributes such as identity and expression, they often overlook the crucial aspect of modeling eyeball rotation, which holds importance for various downstream tasks. In this paper, we aim to learn a face NeRF model that is sensitive to eye movements from multi-view images. We address two key challenges in eye-aware face NeRF learning: how to effectively capture eyeball rotation for training and how to construct a manifold for representing eyeball rotation. To accomplish this, we first fit FLAME, a well-established parametric face model, to the multi-view images considering multi-view consistency. Subsequently, we introduce a new Dynamic Eye-aware NeRF (DeNeRF). DeNeRF transforms 3D points from different views into a canonical space to learn a unified face NeRF model. We design an eye deformation field for the transformation, including rigid transformation, e.g., eyeball rotation, and non-rigid transformation. Through experiments conducted on the ETH-XGaze dataset, we demonstrate that our model is capable of generating high-fidelity images with accurate eyeball rotation and non-rigid periocular deformation, even under novel viewing angles. Furthermore, we show that utilizing the rendered images can effectively enhance gaze estimation performance.

Many approaches for optimizing decision making systems rely on gradient based methods requiring informative feedback from the environment. However, in the case where such feedback is sparse or uninformative, such approaches may result in poor performance. Derivative-free approaches such as Bayesian Optimization mitigate the dependency on the quality of gradient feedback, but are known to scale poorly in the high-dimension setting of complex decision making systems. This problem is exacerbated if the system requires interactions between several actors cooperating to accomplish a shared goal. To address the dimensionality challenge, we propose a compact multi-layered architecture modeling the dynamics of actor interactions through the concept of role. Additionally, we introduce Hessian-aware Bayesian Optimization to efficiently optimize the multi-layered architecture parameterized by a large number of parameters. Experimental results demonstrate that our method (HA-GP-UCB) works effectively on several benchmarks under resource constraints and malformed feedback settings.

For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.

We propose an unconditionally energy-stable, orthonormality-preserving, component-wise splitting iterative scheme for the Kohn-Sham gradient flow based model in the electronic structure calculation. We first study the scheme discretized in time but still continuous in space. The component-wise splitting iterative scheme changes one wave function at a time, similar to the Gauss-Seidel iteration for solving a linear equation system. Rigorous mathematical derivations are presented to show our proposed scheme indeed satisfies the desired properties. We then study the fully-discretized scheme, where the space is further approximated by a conforming finite element subspace. For the fully-discretized scheme, not only the preservation of orthogonality and normalization (together we called orthonormalization) can be quickly shown using the same idea as for the semi-discretized scheme, but also the highlight property of the scheme, i.e., the unconditional energy stability can be rigorously proven. The scheme allows us to use large time step sizes and deal with small systems involving only a single wave function during each iteration step. Several numerical experiments are performed to verify the theoretical analysis, where the number of iterations is indeed greatly reduced as compared to similar examples solved by the Kohn-Sham gradient flow based model in the literature.

In recent years, communication engineers put strong emphasis on artificial neural network (ANN)-based algorithms with the aim of increasing the flexibility and autonomy of the system and its components. In this context, unsupervised training is of special interest as it enables adaptation without the overhead of transmitting pilot symbols. In this work, we present a novel ANN-based, unsupervised equalizer and its trainable field programmable gate array (FPGA) implementation. We demonstrate that our custom loss function allows the ANN to adapt for varying channel conditions, approaching the performance of a supervised baseline. Furthermore, as a first step towards a practical communication system, we design an efficient FPGA implementation of our proposed algorithm, which achieves a throughput in the order of Gbit/s, outperforming a high-performance GPU by a large margin.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

北京阿比特科技有限公司