Quality metrics in health care refer to a variety of measures used mainly to characterize what should have been done for a patient or the health consequences of what was done. When estimating quality of health care, often many metrics are measured and then combined to provide an overall estimate either at the patient level or at higher levels of accountability, such as the provider organization, insurer, or even geographic area. Racial/ethnic disparities are defined as the mean difference in overall quality between minorities and Whites not justified by underlying health conditions or patient preferences. However, several statistical features of health care quality data have frequently been ignored: quality is a theoretical construct that is not directly observed; the quality metrics are measured on different scales or, if measured on the same scale, have different baseline rates; the structure of the construct is likely multidimensional; and metrics are correlated within-patients. We address these features and utilize multi-dimensional item response theory models to estimate racial/ethnic quality disparities. Quality metrics measured on 93,000 adults with schizophrenia residing in 5 U.S. states illustrate approaches.
This paper addresses two fundamental problems in diffusive molecular communication: characterizing the first arrival position (FAP) density and bounding the information transmission capacity of FAP channels. Previous studies on FAP channel models, mostly captured by the density function of noise, have been limited to specific spatial dimensions, drift directions, and receiver geometries. In response, we propose a unified solution for identifying the FAP density in molecular communication systems with fully-absorbing receivers. Leveraging stochastic analysis tools, we derive a concise expression with universal applicability, covering any spatial dimension, drift direction, and receiver shape. We demonstrate that several existing FAP density formulas are special cases of this innovative expression. Concurrently, we establish explicit upper and lower bounds on the capacity of three-dimensional, vertically-drifted FAP channels, drawing inspiration from vector Gaussian interference channels. In the course of deriving these bounds, we unravel an explicit analytical expression for the characteristic function of vertically-drifted FAP noise distributions, providing a more compact characterization compared to the density function. Notably, this expression sheds light on a previously undiscovered weak stability property intrinsic to vertically-drifted FAP noise distributions.
This paper studies structured node classification on graphs, where the predictions should consider dependencies between the node labels. In particular, we focus on solving the problem for partially labeled graphs where it is essential to incorporate the information in the known label for predicting the unknown labels. To address this issue, we propose a novel framework leveraging the diffusion probabilistic model for structured node classification (DPM-SNC). At the heart of our framework is the extraordinary capability of DPM-SNC to (a) learn a joint distribution over the labels with an expressive reverse diffusion process and (b) make predictions conditioned on the known labels utilizing manifold-constrained sampling. Since the DPMs lack training algorithms for partially labeled data, we design a novel training algorithm to apply DPMs, maximizing a new variational lower bound. We also theoretically analyze how DPMs benefit node classification by enhancing the expressive power of GNNs based on proposing AGG-WL, which is strictly more powerful than the classic 1-WL test. We extensively verify the superiority of our DPM-SNC in diverse scenarios, which include not only the transductive setting on partially labeled graphs but also the inductive setting and unlabeled graphs.
Anomalies are samples that significantly deviate from the rest of the data and their detection plays a major role in building machine learning models that can be reliably used in applications such as data-driven design and novelty detection. The majority of existing anomaly detection methods either are exclusively developed for (semi) supervised settings, or provide poor performance in unsupervised applications where there is no training data with labeled anomalous samples. To bridge this research gap, we introduce a robust, efficient, and interpretable methodology based on nonlinear manifold learning to detect anomalies in unsupervised settings. The essence of our approach is to learn a low-dimensional and interpretable latent representation (aka manifold) for all the data points such that normal samples are automatically clustered together and hence can be easily and robustly identified. We learn this low-dimensional manifold by designing a learning algorithm that leverages either a latent map Gaussian process (LMGP) or a deep autoencoder (AE). Our LMGP-based approach, in particular, provides a probabilistic perspective on the learning task and is ideal for high-dimensional applications with scarce data. We demonstrate the superior performance of our approach over existing technologies via multiple analytic examples and real-world datasets.
This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.
Real-world software applications must constantly evolve to remain relevant. This evolution occurs when developing new applications or adapting existing ones to meet new requirements, make corrections, or incorporate future functionality. Traditional methods of software quality control involve software quality models and continuous code inspection tools. These measures focus on directly assessing the quality of the software. However, there is a strong correlation and causation between the quality of the development process and the resulting software product. Therefore, improving the development process indirectly improves the software product, too. To achieve this, effective learning from past processes is necessary, often embraced through post mortem organizational learning. While qualitative evaluation of large artifacts is common, smaller quantitative changes captured by application lifecycle management are often overlooked. In addition to software metrics, these smaller changes can reveal complex phenomena related to project culture and management. Leveraging these changes can help detect and address such complex issues. Software evolution was previously measured by the size of changes, but the lack of consensus on a reliable and versatile quantification method prevents its use as a dependable metric. Different size classifications fail to reliably describe the nature of evolution. While application lifecycle management data is rich, identifying which artifacts can model detrimental managerial practices remains uncertain. Approaches such as simulation modeling, discrete events simulation, or Bayesian networks have only limited ability to exploit continuous-time process models of such phenomena. Even worse, the accessibility and mechanistic insight into such gray- or black-box models are typically very low. To address these challenges, we suggest leveraging objectively [...]
We consider the task of estimating a conditional density using i.i.d. samples from a joint distribution, which is a fundamental problem with applications in both classification and uncertainty quantification for regression. For joint density estimation, minimax rates have been characterized for general density classes in terms of uniform (metric) entropy, a well-studied notion of statistical capacity. When applying these results to conditional density estimation, the use of uniform entropy -- which is infinite when the covariate space is unbounded and suffers from the curse of dimensionality -- can lead to suboptimal rates. Consequently, minimax rates for conditional density estimation cannot be characterized using these classical results. We resolve this problem for well-specified models, obtaining matching (within logarithmic factors) upper and lower bounds on the minimax Kullback--Leibler risk in terms of the empirical Hellinger entropy for the conditional density class. The use of empirical entropy allows us to appeal to concentration arguments based on local Rademacher complexity, which -- in contrast to uniform entropy -- leads to matching rates for large, potentially nonparametric classes and captures the correct dependence on the complexity of the covariate space. Our results require only that the conditional densities are bounded above, and do not require that they are bounded below or otherwise satisfy any tail conditions.
This paper develops an approximation to the (effective) $p$-resistance and applies it to multi-class clustering. Spectral methods based on the graph Laplacian and its generalization to the graph $p$-Laplacian have been a backbone of non-euclidean clustering techniques. The advantage of the $p$-Laplacian is that the parameter $p$ induces a controllable bias on cluster structure. The drawback of $p$-Laplacian eigenvector based methods is that the third and higher eigenvectors are difficult to compute. Thus, instead, we are motivated to use the $p$-resistance induced by the $p$-Laplacian for clustering. For $p$-resistance, small $p$ biases towards clusters with high internal connectivity while large $p$ biases towards clusters of small ``extent,'' that is a preference for smaller shortest-path distances between vertices in the cluster. However, the $p$-resistance is expensive to compute. We overcome this by developing an approximation to the $p$-resistance. We prove upper and lower bounds on this approximation and observe that it is exact when the graph is a tree. We also provide theoretical justification for the use of $p$-resistance for clustering. Finally, we provide experiments comparing our approximated $p$-resistance clustering to other $p$-Laplacian based methods.
We study the Electrical Impedance Tomography Bayesian inverse problem for recovering the conductivity given noisy measurements of the voltage on some boundary surface electrodes. The uncertain conductivity depends linearly on a countable number of uniformly distributed random parameters in a compact interval, with the coefficient functions in the linear expansion decaying at an algebraic rate. We analyze the surrogate Markov Chain Monte Carlo (MCMC) approach for sampling the posterior probability measure, where the multivariate sparse adaptive interpolation, with interpolating points chosen according to a lower index set, is used for approximating the forward map. The forward equation is approximated once before running the MCMC for all the realizations, using interpolation on the finite element (FE) approximation at the parametric interpolating points. When evaluation of the solution is needed for a realization, we only need to compute a polynomial, thus cutting drastically the computation time. We contribute a rigorous error estimate for the MCMC convergence. In particular, we show that there is a nested sequence of interpolating lower index sets for which we can derive an interpolation error estimate in terms of the cardinality of these sets, uniformly for all the parameter realizations. An explicit convergence rate for the MCMC sampling of the posterior expectation of the conductivity is rigorously derived, in terms of the interpolating point number, the accuracy of the FE approximation of the forward equation, and the MCMC sample number. We perform numerical experiments using an adaptive greedy approach to construct the sets of interpolation points. We show the benefits of this approach over the simple MCMC where the forward equation is repeatedly solved for all the samples and the non-adaptive surrogate MCMC with an isotropic index set treating all the random parameters equally.
Large statically indeterminate truss and frame structures exhibit complex load-bearing behavior, and redundancy matrices are helpful for their analysis and design. Depending on the task, the full redundancy matrix or only its diagonal entries are required. The standard computation procedure has a high computational effort. Many structures fall in the category of moderately redundant, i.e., the ratio of the statical indeterminacy to the number of all load-carrying modes of all elements is less one half. This paper proposes a closed-form expression for redundancy contributions that is computationally efficient for moderately redundant systems. The expression is derived via a factorization of the redundancy matrix that is based on singular value decomposition. Several examples illustrate the behavior of the method for increasing size of systems and, where applicable, for increasing degree of statical indeterminacy.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.