Within the environmental context, several tools based on simulations have been proposed to analyze the physical phenomena of heat and mass transfer in porous materials. However, it is still an open challenge to propose tools that do not require to perform computations to catch the dominant processes. Thus, this article proposes to explore advantages of using a dimensionless analysis by scaling the governing equations of heat and mass transfer. Proposed methodology introduces dimensionless numbers and their nonlinear distortions. The relevant investigation enables to enhance the preponderant phenomena to \emph{(i)} compare different categories of materials, \emph{(ii)} evaluate the competition between heat and mass transfer for each material or \emph{(iii)} describe the transfer in multi-layered wall configurations. It also permits to define hygrothermal kinetic, geometric and dynamic similarities among different physical materials. Equivalent systems can be characterized in the framework of experimental or wall designs. Three cases are presented for similarity studies in terms of \emph{(i)} equivalent material length, \emph{(ii)} time of heat and mass transfer and \emph{(iii)} experimental configurations. All these advantages are illustrated in the given article considering $49$ building materials separated in $7$ categories.
Many additive manufacturing (AM) technologies rely on powder feedstock, which is fused to form the final part either by melting or by chemical binding with subsequent sintering. In both cases, process stability and resulting part quality depend on dynamic interactions between powder particles and a fluid phase, i.e., molten metal or liquid binder. The present work proposes a versatile computational modeling framework for simulating such coupled microfluid-powder dynamics problems involving thermo-capillary flow and reversible phase transitions. In particular, a liquid and a gas phase are interacting with a solid phase that consists of a substrate and mobile powder particles while simultaneously considering temperature-dependent surface tension and wetting effects. In case of laser-metal interactions, the effect of rapid evaporation is incorporated through additional mechanical and thermal interface fluxes. All phase domains are spatially discretized using smoothed particle hydrodynamics. The method's Lagrangian nature is beneficial in the context of dynamically changing interface topologies. Special care is taken in the formulation of phase transitions, which is crucial for the robustness of the computational scheme. While the underlying model equations are of a very general nature, the proposed framework is especially suitable for the mesoscale modeling of various AM processes. To this end, the generality and robustness of the computational modeling framework is demonstrated by several application-motivated examples representing the specific AM processes binder jetting, material jetting, directed energy deposition, and powder bed fusion. Among others, it is shown how the dynamic impact of droplets in binder jetting or the evaporation-induced recoil pressure in powder bed fusion leads to powder motion, distortion of the powder packing structure, and powder particle ejection.
Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation estimation uses (semi-)manually labelled marker locations in projection data to fit the parameters of a polynomial deformation model. Manually-labelled marker locations are difficult to obtain when data are noisy or markers overlap in projection data. We propose an alternative mathematical approach for simultaneous marker localization and deformation estimation by extending a grid-free super-resolution algorithm first proposed in the context of single-molecule localization microscopy. Our approach does not require labelled marker locations; instead, we use an image-based loss where we compare the forward projection of markers with the observed data. We equip this marker localization scheme with an additional deformation estimation component and solve for a reduced number of deformation parameters. Using extensive numerical studies on marker-only samples, we show that our approach automatically finds markers and reliably estimates sample deformation without labelled marker data. We further demonstrate the applicability of our approach for a broad range of model mismatch scenarios, including experimental electron tomography data of gold markers on ice.
This paper deals with embedded index coding problem (EICP), introduced by A. Porter and M. Wootters, which is a decentralized communication problem among users with side information. An alternate definition of the parameter minrank of an EICP, which has reduced computational complexity compared to the existing definition, is presented. A graphical representation for an EICP is given using directed bipartite graphs, called bipartite problem graph, and the side information alone is represented using an undirected bipartite graph called the side information bipartite graph. Inspired by the well-studied single unicast index coding problem (SUICP), graphical structures, similar to cycles and cliques in the side information graph of an SUICP, are identified in the side information bipartite graph of a single unicast embedded index coding problem (SUEICP). Transmission schemes based on these graphical structures, called tree cover scheme and bi-clique cover scheme are also presented for an SUEICP. Also, a relation between connectedness of the side information bipartite graph and the number of transmissions required in a scalar linear solution of an EICP is established.
For the approximation and simulation of twofold iterated stochastic integrals and the corresponding L\'{e}vy areas w.r.t. a multi-dimensional Wiener process, we review four algorithms based on a Fourier series approach. Especially, the very efficient algorithm due to Wiktorsson and a newly proposed algorithm due to Mrongowius and R\"ossler are considered. To put recent advances into context, we analyse the four Fourier-based algorithms in a unified framework to highlight differences and similarities in their derivation. A comparison of theoretical properties is complemented by a numerical simulation that reveals the order of convergence for each algorithm. Further, concrete instructions for the choice of the optimal algorithm and parameters for the simulation of solutions for stochastic (partial) differential equations are given. Additionally, we provide advice for an efficient implementation of the considered algorithms and incorporated these insights into an open source toolbox that is freely available for both Julia and MATLAB programming languages. The performance of this toolbox is analysed by comparing it to some existing implementations, where we observe a significant speed-up.
We study the propagation of singularities in solutions of linear convection equations with spatially heterogeneous nonlocal interactions. A spatially varying nonlocal horizon parameter is adopted in the model, which measures the range of nonlocal interactions. Via heterogeneous localization, this can lead to the seamless coupling of the local and nonlocal models. We are interested in understanding the impact on singularity propagation due to the heterogeneities of nonlocal horizon and the local and nonlocal transition. We first analytically derive equations to characterize the propagation of different types of singularities for various forms of nonlocal horizon parameters in the nonlocal regime. We then use asymptotically compatible schemes to discretize the equations and carry out numerical simulations to illustrate the propagation patterns in different scenarios.
Billions of distributed, heterogeneous and resource constrained smart consumer devices deploy on-device machine learning (ML) to deliver private, fast and offline inference on personal data. On-device ML systems are highly context dependent, and sensitive to user, usage, hardware and environmental attributes. Despite this sensitivity and the propensity towards bias in ML, bias in on-device ML has not been studied. This paper studies the propagation of bias through design choices in on-device ML development workflows. We position \emph{reliablity bias}, which arises from disparate device failures across demographic groups, as a source of unfairness in on-device ML settings and quantify metrics to evaluate it. We then identify complex and interacting technical design choices in the on-device ML workflow that can lead to disparate performance across user groups, and thus \emph{reliability bias}. Finally, we show with an empirical case study that seemingly innocuous design choices such as the data sample rate, pre-processing parameters used to construct input features and pruning hyperparameters propagate \emph{reliability bias} through an audio keyword spotting development workflow. We leverage our insights to suggest strategies for developers to develop fairer on-device ML.
With advances in scientific computing and mathematical modeling, complex phenomena can now be reliably simulated. Such simulations can however be very time-intensive, requiring millions of CPU hours to perform. One solution is multi-fidelity emulation, which uses data of varying accuracies (or fidelities) to train an efficient predictive model (or emulator) for the expensive simulator. In complex problems, simulation data with different fidelities are often connected scientifically via a directed acyclic graph (DAG), which cannot be integrated within existing multi-fidelity emulator models. We thus propose a new Graphical Multi-fidelity Gaussian process (GMGP) model, which embeds this scientific DAG information within a Gaussian process framework. We show that the GMGP has desirable modeling traits via two Markov properties, and admits a scalable formulation for recursively computing the posterior predictive distribution along sub-graphs. We also present an experimental design framework over the DAG given a computational budget, and propose a nonlinear extension of the GMGP model via deep Gaussian processes. The advantages of the GMGP model over existing methods are then demonstrated via a suite of numerical experiments and an application to emulation of heavy-ion collisions, which can be used to study the conditions of matter in the Universe shortly after the Big Bang.
Statistical inference on the explained variation of an outcome by a set of covariates is of particular interest in practice. When the covariates are of moderate to high-dimension and the effects are not sparse, several approaches have been proposed for estimation and inference. One major problem with the existing approaches is that the inference procedures are not robust to the normality assumption on the covariates and the residual errors. In this paper, we propose an estimating equation approach to the estimation and inference on the explained variation in the high-dimensional linear model. Unlike the existing approaches, the proposed approach does not rely on the restrictive normality assumptions for inference. It is shown that the proposed estimator is consistent and asymptotically normally distributed under reasonable conditions. Simulation studies demonstrate better performance of the proposed inference procedure in comparison with the existing approaches. The proposed approach is applied to studying the variation of glycohemoglobin explained by environmental pollutants in a National Health and Nutrition Examination Survey data set.
In this paper, based on results of exact learning, test theory, and rough set theory, we study arbitrary infinite families of concepts each of which consists of an infinite set of elements and an infinite set of subsets of this set called concepts. We consider the notion of a problem over a family of concepts that is described by a finite number of elements: for a given concept, we should recognize which of the elements under consideration belong to this concept. As algorithms for problem solving, we consider decision trees of five types: (i) using membership queries, (ii) using equivalence queries, (iii) using both membership and equivalence queries, (iv) using proper equivalence queries, and (v) using both membership and proper equivalence queries. As time complexity, we study the depth of decision trees. In the worst case, with the growth of the number of elements in the problem description, the minimum depth of decision trees of the first type either grows as a logarithm or linearly, and the minimum depth of decision trees of each of the other types either is bounded from above by a constant or grows as a logarithm, or linearly. The obtained results allow us to distinguish seven complexity classes of infinite families of concepts.
Unmanned Aerial Vehicles are increasingly being used in surveillance and traffic monitoring thanks to their high mobility and ability to cover areas at different altitudes and locations. One of the major challenges is to use aerial images to accurately detect cars and count them in real-time for traffic monitoring purposes. Several deep learning techniques were recently proposed based on convolution neural network (CNN) for real-time classification and recognition in computer vision. However, their performance depends on the scenarios where they are used. In this paper, we investigate the performance of two state-of-the-art CNN algorithms, namely Faster R-CNN and YOLOv3, in the context of car detection from aerial images. We trained and tested these two models on a large car dataset taken from UAVs. We demonstrated in this paper that YOLOv3 outperforms Faster R-CNN in sensitivity and processing time, although they are comparable in the precision metric.