In the past few years, Deep Reinforcement Learning (DRL) has become a valuable solution to automatically learn efficient resource management strategies in complex networks. In many scenarios, the learning task is performed in the Cloud, while experience samples are generated directly by edge nodes or users. Therefore, the learning task involves some data exchange which, in turn, subtracts a certain amount of transmission resources from the system. This creates a friction between the need to speed up convergence towards an effective strategy, which requires the allocation of resources to transmit learning samples, and the need to maximize the amount of resources used for data plane communication, maximizing users' Quality of Service (QoS), which requires the learning process to be efficient, i.e., minimize its overhead. In this paper, we investigate this trade-off and propose a dynamic balancing strategy between the learning and data planes, which allows the centralized learning agent to quickly converge to an efficient resource allocation strategy while minimizing the impact on QoS. Simulation results show that the proposed method outperforms static allocation methods, converging to the optimal policy (i.e., maximum efficacy and minimum overhead of the learning plane) in the long run.
This paper investigates deep learning techniques to predict transmit beamforming based on only historical channel data without current channel information in the multiuser multiple-input-single-output downlink. This will significantly reduce the channel estimation overhead and improve the spectrum efficiency especially in high-mobility vehicular communications. Specifically, we propose a joint learning framework that incorporates channel prediction and power optimization, and produces prediction for transmit beamforming directly. In addition, we propose to use the attention mechanism in the Long Short-Term Memory Recurrent Neural Networks to improve the accuracy of channel prediction. Simulation results using both a simple autoregressive process model and the more realistic 3GPP spatial channel model verify that our proposed predictive beamforming scheme can significantly improve the effective spectrum efficiency compared to traditional channel estimation and the method that separately predicts channel and then optimizes beamforming.
Spiking neural networks are becoming increasingly popular for their low energy requirement in real-world tasks with accuracy comparable to the traditional ANNs. SNN training algorithms face the loss of gradient information and non-differentiability due to the Heaviside function in minimizing the model loss over model parameters. To circumvent the problem surrogate method uses a differentiable approximation of the Heaviside in the backward pass, while the forward pass uses the Heaviside as the spiking function. We propose to use the zeroth order technique at the neuron level to resolve this dichotomy and use it within the automatic differentiation tool. As a result, we establish a theoretical connection between the proposed local zeroth-order technique and the existing surrogate methods and vice-versa. The proposed method naturally lends itself to energy-efficient training of SNNs on GPUs. Experimental results with neuromorphic datasets show that such implementation requires less than 1 percent neurons to be active in the backward pass, resulting in a 100x speed-up in the backward computation time. Our method offers better generalization compared to the state-of-the-art energy-efficient technique while maintaining similar efficiency.
The olfactory search POMDP (partially observable Markov decision process) is a sequential decision-making problem designed to mimic the task faced by insects searching for a source of odor in turbulence, and its solutions have applications to sniffer robots. As exact solutions are out of reach, the challenge consists in finding the best possible approximate solutions while keeping the computational cost reasonable. We provide a quantitative benchmarking of a solver based on deep reinforcement learning against traditional POMDP approximate solvers. We show that deep reinforcement learning is a competitive alternative to standard methods, in particular to generate lightweight policies suitable for robots.
Machine learning (ML) tasks are one of the major workloads in today's edge computing networks. Existing edge-cloud schedulers allocate the requested amounts of resources to each task, falling short of best utilizing the limited edge resources for ML tasks. This paper proposes TapFinger, a distributed scheduler for edge clusters that minimizes the total completion time of ML tasks through co-optimizing task placement and fine-grained multi-resource allocation. To learn the tasks' uncertain resource sensitivity and enable distributed scheduling, we adopt multi-agent reinforcement learning (MARL) and propose several techniques to make it efficient, including a heterogeneous graph attention network as the MARL backbone, a tailored task selection phase in the actor network, and the integration of Bayes' theorem and masking schemes. We first implement a single-task scheduling version, which schedules at most one task each time. Then we generalize to the multi-task scheduling case, in which a sequence of tasks is scheduled simultaneously. Our design can mitigate the expanded decision space and yield fast convergence to optimal scheduling solutions. Extensive experiments using synthetic and test-bed ML task traces show that TapFinger can achieve up to 54.9% reduction in the average task completion time and improve resource efficiency as compared to state-of-the-art schedulers.
Few-shot learning allows pre-trained language models to adapt to downstream tasks while using a limited number of training examples. However, practical applications are limited when all model parameters must be optimized. In this work we apply a new technique for parameter efficient few shot learning while adopting a strict definition of parameter efficiency. Our training method combines 1) intermediate training by reformulating natural language tasks as entailment tasks \cite{wang_entailment_2021} and 2) differentiable optimization of template and label tokens \cite{zhang_differentiable_2021}. We quantify the tradeoff between parameter efficiency and performance in the few-shot regime and propose a simple model agnostic approach that can be extended to any task By achieving competitive performance while only optimizing 3\% of a model's parameters and allowing for batched inference, we allow for more efficient practical deployment of models.
Given a dataset on actions and resulting long-term rewards, a direct estimation approach fits value functions that minimize prediction error on the training data. Temporal difference learning (TD) methods instead fit value functions by minimizing the degree of temporal inconsistency between estimates made at successive time-steps. Focusing on finite state Markov chains, we provide a crisp asymptotic theory of the statistical advantages of this approach. First, we show that an intuitive inverse trajectory pooling coefficient completely characterizes the percent reduction in mean-squared error of value estimates. Depending on problem structure, the reduction could be enormous or nonexistent. Next, we prove that there can be dramatic improvements in estimates of the difference in value-to-go for two states: TD's errors are bounded in terms of a novel measure - the problem's trajectory crossing time - which can be much smaller than the problem's time horizon.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.