亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Parallel imaging, a fast MRI technique, involves dynamic adjustments based on the configuration i.e. number, positioning, and sensitivity of the coils with respect to the anatomy under study. Conventional deep learning-based image reconstruction models have to be trained or fine-tuned for each configuration, posing a barrier to clinical translation, given the lack of computational resources and machine learning expertise for clinicians to train models at deployment. Joint training on diverse datasets learns a single weight set that might underfit to deviated configurations. We propose, HyperCoil-Recon, a hypernetwork-based coil configuration task-switching network for multi-coil MRI reconstruction that encodes varying configurations of the numbers of coils in a multi-tasking perspective, posing each configuration as a task. The hypernetworks infer and embed task-specific weights into the reconstruction network, 1) effectively utilizing the contextual knowledge of common and varying image features among the various fields-of-view of the coils, and 2) enabling generality to unseen configurations at test time. Experiments reveal that our approach 1) adapts on the fly to various unseen configurations up to 32 coils when trained on lower numbers (i.e. 7 to 11) of randomly varying coils, and to 120 deviated unseen configurations when trained on 18 configurations in a single model, 2) matches the performance of coil configuration-specific models, and 3) outperforms configuration-invariant models with improvement margins of around 1 dB / 0.03 and 0.3 dB / 0.02 in PSNR / SSIM for knee and brain data. Our code is available at //github.com/sriprabhar/HyperCoil-Recon

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Recent increase of remote-work, online meeting and tele-operation task makes people find that gesture for avatars and communication robots is more important than we have thought. It is one of the key factors to achieve smooth and natural communication between humans and AI systems and has been intensively researched. Current gesture generation methods are mostly based on deep neural network using text, audio and other information as the input, however, they generate gestures mainly based on audio, which is called a beat gesture. Although the ratio of the beat gesture is more than 70% of actual human gestures, content based gestures sometimes play an important role to make avatars more realistic and human-like. In this paper, we propose a attention-based contrastive learning for text-to-gesture (ACT2G), where generated gestures represent content of the text by estimating attention weight for each word from the input text. In the method, since text and gesture features calculated by the attention weight are mapped to the same latent space by contrastive learning, once text is given as input, the network outputs a feature vector which can be used to generate gestures related to the content. User study confirmed that the gestures generated by ACT2G were better than existing methods. In addition, it was demonstrated that wide variation of gestures were generated from the same text by changing attention weights by creators.

Robust and accurate tracking and localization of road users like pedestrians and cyclists is crucial to ensure safe and effective navigation of Autonomous Vehicles (AVs), particularly so in urban driving scenarios with complex vehicle-pedestrian interactions. Existing datasets that are useful to investigate vehicle-pedestrian interactions are mostly image-centric and thus vulnerable to vision failures. In this paper, we investigate Ultra-wideband (UWB) as an additional modality for road users' localization to enable a better understanding of vehicle-pedestrian interactions. We present WiDEVIEW, the first multimodal dataset that integrates LiDAR, three RGB cameras, GPS/IMU, and UWB sensors for capturing vehicle-pedestrian interactions in an urban autonomous driving scenario. Ground truth image annotations are provided in the form of 2D bounding boxes and the dataset is evaluated on standard 2D object detection and tracking algorithms. The feasibility of UWB is evaluated for typical traffic scenarios in both line-of-sight and non-line-of-sight conditions using LiDAR as ground truth. We establish that UWB range data has comparable accuracy with LiDAR with an error of 0.19 meters and reliable anchor-tag range data for up to 40 meters in line-of-sight conditions. UWB performance for non-line-of-sight conditions is subjective to the nature of the obstruction (trees vs. buildings). Further, we provide a qualitative analysis of UWB performance for scenarios susceptible to intermittent vision failures. The dataset can be downloaded via //github.com/unmannedlab/UWB_Dataset.

Physical layer security (PLS) encompasses techniques proposed at the physical layer to achieve information security objectives while requiring a minimal resource footprint. The channel coding-based secrecy and signal modulation-based encryption approaches are reliant on certain channel conditions or a certain communications protocol stack to operate on, which prevents them from being a generic solution. This paper presents Grain-128PLE, a lightweight physical layer encryption (PLE) scheme that is derived from the Grain-128AEAD v2 stream cipher. The Grain-128PLE stream cipher performs encryption and decryption at the physical layer, in between the channel coding and signal modulation processes. This placement, like that of the A5 stream cipher that had been used in the GSM communications standard, makes it a generic solution for providing data confidentiality in IoT networks. The design of Grain-128PLE maintains the structure of the main building blocks of the original Grain-128AEAD v2 stream cipher, evaluated for its security strength during NIST's recent Lightweight Cryptography competition, and is therefore expected to achieve similar levels of security.

Mobile manipulation constitutes a fundamental task for robotic assistants and garners significant attention within the robotics community. A critical challenge inherent in mobile manipulation is the effective observation of the target while approaching it for grasping. In this work, we propose a graspability-aware mobile manipulation approach powered by an online grasping pose fusion framework that enables a temporally consistent grasping observation. Specifically, the predicted grasping poses are online organized to eliminate the redundant, outlier grasping poses, which can be encoded as a grasping pose observation state for reinforcement learning. Moreover, on-the-fly fusing the grasping poses enables a direct assessment of graspability, encompassing both the quantity and quality of grasping poses.

Robust multisensor fusion of multi-modal measurements such as IMUs, wheel encoders, cameras, LiDARs, and GPS holds great potential due to its innate ability to improve resilience to sensor failures and measurement outliers, thereby enabling robust autonomy. To the best of our knowledge, this work is among the first to develop a consistent tightly-coupled Multisensor-aided Inertial Navigation System (MINS) that is capable of fusing the most common navigation sensors in an efficient filtering framework, by addressing the particular challenges of computational complexity, sensor asynchronicity, and intra-sensor calibration. In particular, we propose a consistent high-order on-manifold interpolation scheme to enable efficient asynchronous sensor fusion and state management strategy (i.e. dynamic cloning). The proposed dynamic cloning leverages motion-induced information to adaptively select interpolation orders to control computational complexity while minimizing trajectory representation errors. We perform online intrinsic and extrinsic (spatiotemporal) calibration of all onboard sensors to compensate for poor prior calibration and/or degraded calibration varying over time. Additionally, we develop an initialization method with only proprioceptive measurements of IMU and wheel encoders, instead of exteroceptive sensors, which is shown to be less affected by the environment and more robust in highly dynamic scenarios. We extensively validate the proposed MINS in simulations and large-scale challenging real-world datasets, outperforming the existing state-of-the-art methods, in terms of localization accuracy, consistency, and computation efficiency. We have also open-sourced our algorithm, simulator, and evaluation toolbox for the benefit of the community: //github.com/rpng/mins.

Federated Learning (FL) allows machine learning models to train locally on individual mobile devices, synchronizing model updates via a shared server. This approach safeguards user privacy; however, it also generates a heterogeneous training environment due to the varying performance capabilities across devices. As a result, straggler devices with lower performance often dictate the overall training time in FL. In this work, we aim to alleviate this performance bottleneck due to stragglers by dynamically balancing the training load across the system. We introduce Invariant Dropout, a method that extracts a sub-model based on the weight update threshold, thereby minimizing potential impacts on accuracy. Building on this dropout technique, we develop an adaptive training framework, Federated Learning using Invariant Dropout (FLuID). FLuID offers a lightweight sub-model extraction to regulate computational intensity, thereby reducing the load on straggler devices without affecting model quality. Our method leverages neuron updates from non-straggler devices to construct a tailored sub-model for each straggler based on client performance profiling. Furthermore, FLuID can dynamically adapt to changes in stragglers as runtime conditions shift. We evaluate FLuID using five real-world mobile clients. The evaluations show that Invariant Dropout maintains baseline model efficiency while alleviating the performance bottleneck of stragglers through a dynamic, runtime approach.

Trusted Execution Environments (TEEs) embedded in IoT devices provide a deployable solution to secure IoT applications at the hardware level. By design, in TEEs, the Trusted Operating System (Trusted OS) is the primary component. It enables the TEE to use security-based design techniques, such as data encryption and identity authentication. Once a Trusted OS has been exploited, the TEE can no longer ensure security. However, Trusted OSes for IoT devices have received little security analysis, which is challenging from several perspectives: (1) Trusted OSes are closed-source and have an unfavorable environment for sending test cases and collecting feedback. (2) Trusted OSes have complex data structures and require a stateful workflow, which limits existing vulnerability detection tools. To address the challenges, we present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes. SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices as well as tracking state and code coverage non-invasively. SyzTrust utilizes composite feedback to guide the fuzzer to effectively explore more states as well as to increase the code coverage. We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud. These systems run on Cortex M23/33 MCUs, which provide the necessary abstraction for embedded TEEs. We discovered 70 previously unknown vulnerabilities in their Trusted OSes, receiving 10 new CVEs so far. Furthermore, compared to the baseline, SyzTrust has demonstrated significant improvements, including 66% higher code coverage, 651% higher state coverage, and 31% improved vulnerability-finding capability. We report all discovered new vulnerabilities to vendors and open source SyzTrust.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司