亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The success of a web application is closely linked to its performance, which positively impacts user satisfaction and contributes to energy-saving efforts. Among the various optimization techniques, one specific subject focuses on improving the utilization of web fonts. This study investigates the impact of different font formats on client-side resource consumption, such as CPU, memory, load time, and energy. In a controlled experiment, we evaluate performance metrics using the four font formats: OTF, TTF, WOFF, and WOFF2. The results of the study show that there are significant differences between all pair-wise format comparisons regarding all performance metrics. Overall, WOFF2 performs best, except in terms of memory allocation. Through the study and examination of literature, this research contributes (1) an overview of methodologies to enhance web performance through font utilization, (2) a specific exploration of the four prevalent font formats in an experimental setup, and (3) practical recommendations for scientific professionals and practitioners.

相關內容

A grid of orthogonal beams with zero column coherence can be easily constructed to cover all prospective user equipments (UEs) in the far-field region of a multiple-antenna base station (BS). However, when the BS is equipped with an extremely large aperture array, the Fraunhofer distance is huge, causing the UEs to be located in the radiative near-field region. This calls for designing a grid of beams based on a near-field dictionary. In the previous work, a polar-domain grid design was proposed to maintain control over the column coherence. A limitation of this approach is identified in this paper, and we propose an enhanced methodology for the design of a polar-domain dictionary specifically tailored for the near-field of an extremely large aperture uniform planar array. Through simulation results, it is demonstrated that the proposed dictionary, employing a non-uniform distance sampling approach, achieves lower column coherence than the benchmark and significantly improves the localization of UEs compared to uniform distance sampling.

In an age of voice-enabled technology, voice anonymization offers a solution to protect people's privacy, provided these systems work equally well across subgroups. This study investigates bias in voice anonymization systems within the context of the Voice Privacy Challenge. We curate a novel benchmark dataset to assess performance disparities among speaker subgroups based on sex and dialect. We analyze the impact of three anonymization systems and attack models on speaker subgroup bias and reveal significant performance variations. Notably, subgroup bias intensifies with advanced attacker capabilities, emphasizing the challenge of achieving equal performance across all subgroups. Our study highlights the need for inclusive benchmark datasets and comprehensive evaluation strategies that address subgroup bias in voice anonymization.

EHR audit logs are a highly granular stream of events that capture clinician activities, and is a significant area of interest for research in characterizing clinician workflow on the electronic health record (EHR). Existing techniques to measure the complexity of workflow through EHR audit logs (audit logs) involve time- or frequency-based cross-sectional aggregations that are unable to capture the full complexity of a EHR session. We briefly evaluate the usage of transformer-based tabular language model (tabular LM) in measuring the entropy or disorderedness of action sequences within workflow and release the evaluated models publicly.

An initial procedure in text-as-data applications is text preprocessing. One of the typical steps, which can substantially facilitate computations, consists in removing infrequent words believed to provide limited information about the corpus. Despite popularity of vocabulary pruning, not many guidelines on how to implement it are available in the literature. The aim of the paper is to fill this gap by examining the effects of removing infrequent words for the quality of topics estimated using Latent Dirichlet Allocation. The analysis is based on Monte Carlo experiments taking into account different criteria for infrequent terms removal and various evaluation metrics. The results indicate that pruning is beneficial and that the share of vocabulary which might be eliminated can be quite considerable.

Microservices are increasingly used in modern applications, leading to a growing need for effective service composition solutions. However, we argue that traditional API-centric composition mechanisms (e.g., RPC, REST, and Pub/Sub) hamper the modularity of microservices. These mechanisms introduce rigid code-level coupling, scatter composition logic, and hinder visibility into cross-service data exchanges. Ultimately, these limitations complicate the maintenance and evolution of microservice-based applications. In response, we propose a rethinking of service composition and present Knactor, a new data-centric composition framework to restore the modularity that microservices were intended to offer. Knactor decouples service composition from service development, allowing composition to be implemented as explicit data exchanges among multiple services. Our initial case study suggests that Knactor simplifies service composition and creates new opportunities for optimizations.

Internet of Things (IoT) devices are typically designed to function in a secure, closed environment, making it difficult for users to comprehend devices' behaviors. This paper shows that a user can leverage side-channel information to reason fine-grained internal states of black box IoT devices. The key enablers for our design are a multi-model sensing technique that fuses power consumption, network traffic, and radio emanations and an annotation interface that helps users form mental models of a black box IoT system. We built a prototype of our design and evaluated the prototype with open-source IoT devices and black-box commercial devices. Our experiments show a false positive rate of 1.44% for open-source IoT devices' state probing, and our participants take an average of 19.8 minutes to reason the internal states of black-box IoT devices.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司